1,895 research outputs found

    Calicivirus emergence from ocean reservoirs: zoonotic and interspecies movements.

    Get PDF
    Caliciviral infections in humans, among the most common causes of viral-induced vomiting and diarrhea, are caused by the Norwalk group of small round structured viruses, the Sapporo caliciviruses, and the hepatitis E agent. Human caliciviruses have been resistant to in vitro cultivation, and direct study of their origins and reservoirs outside infected humans or water and foods (such as shellfish contaminated with human sewage) has been difficult. Modes of transmission, other than direct fecal-oral routes, are not well understood. In contrast, animal viruses found in ocean reservoirs, which make up a second calicivirus group, can be cultivated in vitro. These viruses can emerge and infect terrestrial hosts, including humans. This article reviews the history of animal caliciviruses, their eventual recognition as zoonotic agents, and their potential usefulness as a predictive model for noncultivatable human and other animal caliciviruses (e.g., those seen in association with rabbit hemorrhagic disease)

    Using airborne LiDAR Survey to explore historic-era archaeological landscapes of Montserrat in the eastern Caribbean

    Get PDF
    This article describes what appears to be the first archaeological application of airborne LiDAR survey to historic-era landscapes in the Caribbean archipelago, on the island of Montserrat. LiDAR is proving invaluable in extending the reach of traditional pedestrian survey into less favorable areas, such as those covered by dense neotropical forest and by ashfall from the past two decades of active eruptions by the Soufrière Hills volcano, and to sites in localities that are inaccessible on account of volcanic dangers. Emphasis is placed on two aspects of the research: first, the importance of ongoing, real-time interaction between the LiDAR analyst and the archaeological team in the field; and second, the advantages of exploiting the full potential of the three-dimensional LiDAR point cloud data for purposes of the visualization of archaeological sites and features

    CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report γ-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for γ-ray measurements in the range of 20-600 keV. The prototype is a 1.5 mm thick, 64×64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8×8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals. We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Performance of CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report & gamma;-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for & gamma;-ray astronomy measurements in the range of 20-200 keV. The prototype is a 1.5 mm thick, 64×64 orthogonal stripeCdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8×8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals, and the photon detection efficiency. We also present a technique for determining the location of the event in the third dimension (depth). We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that the cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Learning to Swim: What Influences Success?

    Get PDF
    Swimming and water safety skills are important life skills, particularly in Australia, where aquatic activities are regularly enjoyed. Little research has been undertaken exploring children’s swimming and water safety skills, what level they can achieve, and what factors impact their ability to learn these skills. This study explores children aged 5-12 years who participated in the Australian Capital Territory Primary Schools Swim and Survive Program, 2009-2011. Children who were more likely to achieve higher levels were older, were female, attended private school, swam at least once a fortnight, had a swimming pool at home, or visited a public swimming pool. Those who were less likely were Aboriginal or Torres Strait Islander, had a negative experience, and swam less than once a fortnight

    Minute-of-Arc Resolution Gamma ray Imaging Experiment—MARGIE

    Get PDF
    MARGIE (Minute-of-Arc Resolution Gamma-ray Imaging Experiment) is a large area(∼104 cm2), wide field-of-view (∼1 sr), hard X-ray/gamma-ray (∼20–600 keV) coded-mask imaging telescope capable of performing a sensitive survey of both steady and transient cosmic sources. MARGIE has been selected for a NASA mission-concept study for an Ultra Long Duration (100 day) Balloon flight. We describe our program to develop the instrument based on new detector technology of either cadmium zinc telluride (CZT) semiconductors or pixellated cesium iodide (CsI) scintillators viewed by fast-timing bi-directional charge-coupled devices (CCDs). The primary scientific objectives are to image faint Gamma-Ray Bursts (GRBs) in near-real-time at the low intensity (high-redshift) end of the logN-logS distribution, thereby extending the sensitivity of present observations, and to perform a wide field survey of the Galactic plane
    • …
    corecore