2,639 research outputs found

    Environmentally Friendly Thermoelectric Materials: High Performance from Inorganic Components with Low Toxicity and Abundance in the Earth

    Full text link
    This review article gives an overview of the recent research directions in eco-friendly, non-toxic, and earth-abundant thermoelectric materials. It covers materials such as sulfides, tetrahedrites, earth-abundant oxides, silicides, copper iodine, Half-Heusler intermetallic compounds, nitrides, and other environmentally friendly thermoelectrics. In all cases, their history, structure, general characteristics, thermoelectric properties, synthesis methods, and related thermoelectric applications are compiled. It is also shown that they are starting to be an excellent alternative for producing cost-effective, sustainable, and non-toxic thermoelectric generators. This review does not try to include all possible materials, but to show that there are high zT thermoelectric materials that are starting to be an excellent alternative for producing cost-effective, sustainable, and non-toxic thermoelectric generators.O.C.-C. and M.M.-G. would like to acknowledge financial support from MAT2017-86450-C4-3-R and the 2D_MESES project from CSIC, and J.R.A., from RTI2018-099794-B-I100

    Synthesis and luminescence properties of electrodeposited ZnO Films

    Get PDF
    ZnO films have been grown on gold (111) by electrodeposition using two different OH- sources, nitrate and peroxide, in order to obtain a comparative study between these films. The morphology, structural and optical characterization of the films were investigated depending on the solution used (nitrate and peroxide) and the applied potential. Scanning Electron Microscopy pictures show different morphologies in each case. X-Ray Diffraction confirms that the films are pure ZnO oriented along the (0002) direction. ZnO films have been studied by photoluminescence to identify the emission of defects in the visible range. A consistent model that explains the emissions for the different electrodeposited ZnO films is proposed. We have associated the green and yellow emissions to a transition from the donor OH- to the acceptor zinc vacancies (VZn-) and to interstitial oxygen (Oi0), respectively. The orange-red emission is probably due to transitions from the conducting band to Oi- and OZn 0 defects and the infrared emission to transition from these Oi -/2- and OZn 0/- defects to the valence band.Comment: 17 pages, 1 Table and 10 figure

    Recrystallization of amorphous nano-tracks and uniform layers generated by swift-ion-beam irradiation in lithium niobate.

    Get PDF
    The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore