3,508 research outputs found
Adherence to secondary stroke prevention strategies - Results from the German stroke data bank
Only very limited data are available concerning patient adherence to antithrombotic medication intended to prevent a recurrent stroke. Reduced adherence and compliance could significantly influence the effects of any stroke prevention strategies. This study from a large stroke data bank provides representative data concerning the rate of stroke victims adhering to their recommended preventive medication. During a 2-year period beginning January 1, 1998, all patients with acute stroke or TIA in 23 neurological departments with an acute stroke unit were included in the German Stroke Data Bank. Data were collected prospectively, reviewed, validated and processed in a central data management unit. Only 12 centers with a follow-up rate of 80% or higher were included in this evaluation. 3,420 patients were followed up after 3 months, and 2,640 patients were followed up one year after their stroke. After one year, 96% of all patients reported still adhere to at least one medical stroke prevention strategy. Of the patients receiving aspirin at discharge, 92.6% reported to use that medication after 3 months and 84% after one year, while 81.6 and 61.6% were the respective figures for clopidogrel, and 85.2 and 77.4% for oral anticoagulation. Most patients who changed medication switched from aspirin to clopidogrel. Under the conditions of this observational study, adherence to stroke prevention strategies is excellent. The highest adherence rate is noticed for aspirin and oral anticoagulation. After one year, very few patients stopped taking stroke preventive medication. Copyright (C) 2003 S. Karger AG, Basel
Cytokine Profiles of Stimulated Blood Lymphocytes in Asthmatic and Healthy Adolescents Cross the School Year
T cell cytokines play an important role in mediating airway inflammation in asthma. The predominance of a Th2 cytokine profile, particularly interleukin (IL)-4 and IL-5, is associated with the pathogenesis and course of asthma. The aim of this study was to test the hypothesis that a stressful life event alters the pattern of cytokine release in asthmatic individuals. Thirteen healthy controls and 21 asthmatic adolescents gave blood samples three times over a semester: midsemester, during the week of final examinations, and 2-3 weeks after examinations. Interferon-γ (IFN-γ), IL-2, IL-4, and IL-5 were measured from supernatants of cells stimulated with PHA/PMA for 24 h. Cells from asthmatic subjects released significantly more IL-5 during the examination and postexamination periods, whereas cells from healthy controls released significantly more IL-2 during the midsemester and examination periods, thereby indicating a bias for a Th2-like pattern in asthmatics and a Th 1-like pattern in healthy controls. IL-4 and IL-5 production showed a marked decrease during and after examinations in healthy controls, whereas this decline was absent in asthmatics. The ratios of IFN-γ:IL-4 and IFN-γ:IL-5 also revealed significant changes in the profile of cytokine release across the semester. These results indicate differential cytokine responses in asthmatics that may become pronounced during periods of cellular activation
Elastic turbulence in shear banding wormlike micelles
We study the dynamics of the Taylor-Couette flow of shear banding wormlike
micelles. We focus on the high shear rate branch of the flow curve and show
that for sufficiently high Weissenberg numbers, this branch becomes unstable.
This instability is strongly sub-critical and is associated with a shear stress
jump. We find that this increase of the flow resistance is related to the
nucleation of turbulence. The flow pattern shows similarities with the elastic
turbulence, so far only observed for polymer solutions. The unstable character
of this branch led us to propose a scenario that could account for the recent
observations of Taylor-like vortices during the shear banding flow of wormlike
micelles
Dependence of magnetic field generation by thermal convection on the rotation rate: a case study
Dependence of magnetic field generation on the rotation rate is explored by
direct numerical simulation of magnetohydrodynamic convective attractors in a
plane layer of conducting fluid with square periodicity cells for the Taylor
number varied from zero to 2000, for which the convective fluid motion halts
(other parameters of the system are fixed). We observe 5 types of hydrodynamic
(amagnetic) attractors: two families of two-dimensional (i.e. depending on two
spatial variables) rolls parallel to sides of periodicity boxes of different
widths and parallel to the diagonal, travelling waves and three-dimensional
"wavy" rolls. All types of attractors, except for one family of rolls, are
capable of kinematic magnetic field generation. We have found 21 distinct
nonlinear convective MHD attractors (13 steady states and 8 periodic regimes)
and identified bifurcations in which they emerge. In addition, we have observed
a family of periodic, two-frequency quasiperiodic and chaotic regimes, as well
as an incomplete Feigenbaum period doubling sequence of bifurcations of a torus
followed by a chaotic regime and subsequently by a torus with 1/3 of the
cascade frequency. The system is highly symmetric. We have found two novel
global bifurcations reminiscent of the SNIC bifurcation, which are only
possible in the presence of symmetries. The universally accepted paradigm,
whereby an increase of the rotation rate below a certain level is beneficial
for magnetic field generation, while a further increase inhibits it (and halts
the motion of fluid on continuing the increase) remains unaltered, but we
demonstrate that this "large-scale" picture lacks many significant details.Comment: 39 pp., 22 figures (some are low quality), 5 tables. Accepted in
Physica
Asymmetric Squares as Standing Waves in Rayleigh-Benard Convection
Possibility of asymmetric square convection is investigated numerically using
a few mode Lorenz-like model for thermal convection in Boussinesq fluids
confined between two stress free and conducting flat boundaries. For relatively
large value of Rayleigh number, the stationary rolls become unstable and
asymmetric squares appear as standing waves at the onset of secondary
instability. Asymmetric squares, two dimensional rolls and again asymmetric
squares with their corners shifted by half a wavelength form a stable limit
cycle.Comment: 8 pages, 7 figure
Mechanical Competence and Bone Quality Develop During Skeletal Growth.
Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research
Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium
We report the observation of dynamo action in the VKS experiment, i.e., the
generation of magnetic field by a strongly turbulent swirling flow of liquid
sodium. Both mean and fluctuating parts of the field are studied. The dynamo
threshold corresponds to a magnetic Reynolds number Rm \sim 30. A mean magnetic
field of order 40 G is observed 30% above threshold at the flow lateral
boundary. The rms fluctuations are larger than the corresponding mean value for
two of the components. The scaling of the mean square magnetic field is
compared to a prediction previously made for high Reynolds number flows.Comment: 4 pages, 5 figure
Wavy stripes and squares in zero P number convection
A simple model to explain numerically observed behaviour of chaotically
varying stripes and square patterns in zero Prandtl number convection in
Boussinesq fluid is presented. The nonlinear interaction of mutually
perpendicular sets of wavy rolls, via higher mode, may lead to a competition
between the two sets of wavy rolls. The appearance of square patterns is due to
the secondary forward Hopf bifurcation of a set of wavy rolls.Comment: 8 pages and 3 figures, late
Quasiperiodic waves at the onset of zero Prandtl number convection with rotation
We show the possibility of quasiperiodic waves at the onset of thermal
convection in a thin horizontal layer of slowly rotating zero-Prandtl number
Boussinesq fluid confined between stress-free conducting boundaries. Two
independent frequencies emerge due to an interaction between a stationary
instability and a self-tuned wavy instability in presence of coriolis force, if
Taylor number is raised above a critical value. Constructing a dynamical system
for the hydrodynamical problem, the competition between the interacting
instabilities is analyzed. The forward bifurcation from the conductive state is
self-tuned.Comment: 9 pages of text (LaTex), 5 figures (Jpeg format
Low-Prandtl-number B\'enard-Marangoni convection in a vertical magnetic field
The effect of a homogeneous magnetic field on surface-tension-driven
B\'{e}nard convection is studied by means of direct numerical simulations. The
flow is computed in a rectangular domain with periodic horizontal boundary
conditions and the free-slip condition on the bottom wall using a
pseudospectral Fourier-Chebyshev discretization. Deformations of the free
surface are neglected. Two- and three-dimensional flows are computed for either
vanishing or small Prandtl number, which are typical of liquid metals. The main
focus of the paper is on a qualitative comparison of the flow states with the
non-magnetic case, and on the effects associated with the possible
near-cancellation of the nonlinear and pressure terms in the momentum equations
for two-dimensional rolls. In the three-dimensional case, the transition from a
stationary hexagonal pattern at the onset of convection to three-dimensional
time-dependent convection is explored by a series of simulations at zero
Prandtl number.Comment: 26 pages, 9 figure
- …
