342 research outputs found

    Genetics of calcium homeostasis in humans: continuum between monogenic diseases and continuous phenotypes

    Get PDF
    Extracellular calcium participates in several key physiological functions, such as control of blood coagulation, bone calcification or muscle contraction. Calcium homeostasis in humans is regulated in part by genetic factors, as illustrated by rare monogenic diseases characterized by hypo or hypercalcaemia. Both serum calcium and urinary calcium excretion are heritable continuous traits in humans. Serum calcium levels are tightly regulated by two main hormonal systems, i.e. parathyroid hormone and vitamin D, which are themselves also influenced by genetic factors. Recent technological advances in molecular biology allow for the screening of the human genome at an unprecedented level of detail and using hypothesis-free approaches, such as genome-wide association studies (GWAS). GWAS identified novel loci for calcium-related phenotypes (i.e. serum calcium and 25-OH vitamin D) that shed new light on the biology of calcium in humans. The substantial overlap (i.e. CYP24A1, CASR, GATA3; CYP2R1) between genes involved in rare monogenic diseases and genes located within loci identified in GWAS suggests a genetic and phenotypic continuum between monogenic diseases of calcium homeostasis and slight disturbances of calcium homeostasis in the general population. Future studies using whole-exome and whole-genome sequencing will further advance our understanding of the genetic architecture of calcium homeostasis in humans. These findings will likely provide new insight into the complex mechanisms involved in calcium homeostasis and hopefully lead to novel preventive and therapeutic approaches. Keyword: calcium, monogenic, genome-wide association studies, genetics

    Memo1 gene expression in kidney and bone is unaffected by dietary mineral load and calciotropic hormones.

    Get PDF
    Mediator of cell motility 1 (MEMO1) is a ubiquitously expressed modulator of cellular responses to growth factors including FGF23 signaling, and Memo1-deficient mice share some phenotypic traits with Fgf23- or Klotho-deficient mouse models. Here, we tested whether Memo1 gene expression is regulated by calciotropic hormones or by changing the dietary mineral load. MLO-Y4 osteocyte-like cells were cultured and treated with 1,25(OH) <sub>2</sub> -vitamin D <sub>3</sub> . Wild-type C57BL/6N mice underwent treatments with 1,25(OH) <sub>2</sub> -vitamin D <sub>3</sub> , parathyroid hormone, 17β-estradiol or vehicle. Other cohorts of C57BL/6N mice were fed diets varying in calcium or phosphate content. Expression of Memo1 and control genes was assessed by qPCR. 1,25(OH) <sub>2</sub> -vitamin D <sub>3</sub> caused an acute decrease in Memo1 transcript levels in vitro, but not in vivo. None of the hormones tested had an influence on Memo1 transcripts, whereas the assessed control genes reacted the expected way. Dietary interventions with calcium and phosphate did not affect Memo1 transcripts but altered the chosen control genes' expression. We observed that Memo1 was not regulated by calciotropic hormones or change in mineral load, suggesting major differences between the regulation and physiological roles of Klotho, Fgf23, and Memo1

    Practice patterns of kidney stone management across European and non-European centers: an in-depth investigation from the European Renal Stone Network (ERSN).

    Get PDF
    Kidney stones are a common condition in the general population, however, high-quality evidence for its management is scarce. We propose the creation of an international network with the aim of sharing practice patterns and patient data towards an improvement of our knowledge of the disease. Cross-sectional survey. An online survey was circulated through several scientific societies. Items were grouped into six domains. Each center's overall score (OS) was also calculated. Chi square and Mann-Whitney tests were performed for differences across centers. The countries that contributed most were Italy (8.6%), Turkey (6.6%), France and Spain (6.1%). Some type of nutritional work-up was implemented in 62% of centers. A DEXA scan was performed by 46% of centers, whereas some kind of acidification test was performed by 25% of centers. Most centers (80%) implemented blood investigations at least at baseline. With regard to 24-h urine exams, 7 out of 16 were performed by at least 50% of centers. Information on stone composition was collected by 58% of centers. The OS was significantly higher among higher-volume centers compared with lower-volume centers (p = 0.002). Significant differences between EU and non-EU centers were found. Cross-sectional design; no validation on information. Our survey highlights the potential for the creation of a network of centers that could share information in a common database for observational research and for enrollment of patients in interventional trials

    Altered Prostasin (CAP1/Prss8) Expression Favors Inflammation and Tissue Remodeling in DSS-induced Colitis.

    Get PDF
    Inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn's disease are diseases with impaired epithelial barrier function. We aimed to investigate whether mutated prostasin and thus, reduced colonic epithelial sodium channel activity predisposes to develop an experimentally dextran sodium sulfate (DSS)-induced colitis. Wildtype, heterozygous (fr/+), and homozygous (fr/fr) prostasin-mutant rats were treated 7 days with DSS followed by 7 days of recovery and analyzed with respect to histology, clinicopathological parameters, inflammatory marker mRNA transcript expression, and sodium transporter protein expression. In this study, a more detailed analysis on rat fr/fr colons revealed reduced numbers of crypt and goblet cells, and local angiodysplasia, as compared with heterozygous (fr/+) and wildtype littermates. Following 2% DSS treatment for 7 days followed by 7 days recovery, fr/fr animals lost body weight, and reached maximal diarrhea score and highest disease activity after only 3 days, and strongly increased cytokine levels. The histology score significantly increased in all groups, but fr/fr colons further displayed pronounced histological alterations with near absence of goblet cells, rearrangement of the lamina propria, and presence of neutrophils, eosinophils, and macrophages. Additionally, fr/fr colons showed ulcerations and edemas that were absent in fr/+ and wildtype littermates. Following recovery, fr/fr rats reached, although significantly delayed, near-normal diarrhea score and disease activity, but exhibited severe architectural remodeling, despite unchanged sodium transporter protein expression. In summary, our results demonstrate a protective role of colonic prostasin expression against experimental colitis, and thus represent a susceptibility gene in the development of inflammatory bowel disease
    corecore