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Abstract. A trend in the development of WC based cemented carbides and zirconia based ceramic 

composites is grain size refinement and more narrow grain size distributions of the starting powder, 

in order to accomplish higher hardness and abrasive wear resistance. The current work reports the 

results of dry sliding wear experiments on laboratory-made electrically conductive ZrO2-WC 

composites and commercially available WC-Co based cemented carbides, which have been 

manufactured and finished by rough cutting wire EDM with consecutive execution of gradually 

finer EDM regimes. Tribological data are obtained using a small-scale pin-on-plate test rig. Wear 

tracks are analyzed by surface scanning topography and scanning electron microscopy, revealing 

that the outer extensions of the wear tracks exhibit some differences in wear behavior compared to 

the central parts. 

Introduction 

For two materials in sliding contact, one source of stresses is obviously the normal force that acts 

on the contact. The stresses in a material that are governed by a concentrated contact are described 

analytically by Hamilton [1]. For the concentrated contact situation a maximum tensile stress occurs 

at the trailing edge of the sliding contact. This stress can easily be converted to a dimensionless 

number for determining the mechanical severity of contact [2,3]. Another source of stresses is the 

thermal expansion due to frictional heating.  

This paper focuses on the reciprocating sliding friction and wear behavior of WC-Co cemented 

carbides and ZrO2-WC composites against WC-Co cemented carbides. Flat samples of these 

materials were manufactured and surface finished by wire-EDM and grinding and tested using a 

small-scale pin on plate tribometer. Detailed investigation of the online monitoring of friction forces 

as function of the sliding wear path as well as surface viewing of the generated wear tracks by 

scanning electron microscopy and wear quantification by surface scanning topography, reveal a 

significant difference between the outer extensions of the wear tracks compared to the central parts. 

Experimental 

ZrO2-WC composites. The ZrO2-WC ceramic composites were obtained by hot pressing of yttria-

stabilised ZrO2 powder mixtures with 40 vol % of WC. Flat samples were manufactured by wire-

EDM on a ROBOFIL 2000 (Charmilles Technologies, Switzerland) in demineralised water 

(dielectric conductivity 5 µS/cm), using a brass wire (CuZn37) electrode with a diameter of 0.25 

mm and a tensile strength of 500 MPa. More information on the processing and characterisation of 

this ZrO2-based composite, together with the mechanical, physical, microstructural and surface 

finishing characteristics, is given elsewhere [4,5]. 

WC-Co cemented carbides. The WC-Co cemented carbides investigated are CERATIZIT grades, 

manufactured by grinding (JF415DS, Jung, Göppingen, Germany) with a diamond grinding wheel 
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(type MD4075B55, Wendt Boart, Brussels, Belgium). For more details about their mechanical, 

physical and microstructural properties, together with their surface roughness, one is referred to  [6]. 

In this paper, one rough and one fine EDM cut, as well as ground surface finishes were selected for 

dry sliding experiments 

 

Wear testing. The wear behavior of wire-EDM’ed ZrO2-WC composites and ground WC-Co 

cemented carbides was evaluated using a high frequency tribometer, in which a WC-Co cemented 

carbide pin was reciprocally slid against test specimen counter plates, in accordance with ASTM 

G133. The pin material (CERATIZIT grade MG12 cemented carbide with 6 wt. % Co)  has a 

compressive strength of 7.2 GPa, a Vickers hardness HV10 of 1913 kg/mm
2
, a fracture toughness of 

9.3 MPa m
1/2

 and a stiffness of 609 GPa. The sliding tip of the pins was a hemisphere with a 

rounding radius and roughness parameters Ra and Rt that were measured to be 4.08 mm, 0.35 µm 

and 2.68 µm respectively. 

The contact load and the sliding velocity were varied in the range of 15 up to 100 N and 0.3 up to 

0.9 m/s, with a stroke length of 15 mm. The test duration was associated with a sliding distance of 

10 km. Before each test, the specimens were cleaned with acetone. After each test, the wear 

topography was quantified using surface scanning equipment (Somicronic® EMS Surfascan 3D, 

type SM3, needle type ST305). The wear scars were examined by scanning electron microscopy 

(SEM, XL-30 FEG, FEI, The Netherlands), equipped with an energy dispersion X-ray spectroscopy 

system (EDS). 

Results and discussion 

Friction and wear depth. Typical and representative wear data for wire-EDM’ed ZrO2-WC 

composite flat/ WC-Co pin combination as function of sliding distance are presented in Fig. 1. The 

applied normal force (FN) and the concomitant tangential friction force (FT) were recorded 

continuously as function of sliding distance (s), as illustrated in Fig. 1(a), respectively by means of a 

load-cell and a piezoelectric transducer. The friction force appears either positive or negative, 

depending on the sliding direction. One sliding cycle, i.e., a double sliding stroke, contained 50 

sample values. The FT/FN forces ratio is defined as the coefficient of friction (µ), which can be 

differentiated in a static (µstat) and a dynamic (µdyn) component, Fig. 1(b). Simultaneously, the 

combined wear depth (∆d), resulting from the pin penetrating the counter plate, was acquired by an 

inductive displacement transducer. From the vertical displacement curves, instantaneous wear rate 

curves (kd) were derived by 

kd(s) = ∆d(s)/(FN⋅ s).  (1) 

The friction coefficient and wear loss are noticed to increase abruptly during initial sliding and 

gradually ascend further due to growing pin on plate contact surface, whereas just the opposite 

behavior is observed for the wear rate. After a running-in stage, the tribosystem reaches a steady 

state with an almost exponential variation of wear depth and wear rate as function of sliding 

distance and, at the same time, a short drop down and subsequently gradual recovery in the friction 

coefficient. The fluctuations in the friction curves, both in the initial and steady state regime, 

indicate a more pronounced adhesion of both contact surfaces [5]. The dynamic and static 

component of friction are found to vary similarly as function of the sliding distance, however at a 

different level. The instabilities in the friction curves during the first sliding km can be related to the 

changes in the sliding contact surface and removal of the wire-EDM induced recast layer. 

Detailed investigation of the curves shown in Fig. 1(b), allowed to infer that peaks in the friction 

force curves mostly occur at reversing the sliding direction, i.e., at the outer edges of the sliding 

contact surface. 
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Fig. 1: real-time normal force and friction force (a) and wear depth, wear rate, static and dynamic friction 

coefficient (b) for wire-EDM’ed ZrO2-WC flat/ WC-Co pin pairs sliding at 0.3 m/s, under a 15 N contact load 

 

Wear surface analysis. Wear experiments were carried out under the condition of a constant 

total sliding distance of 10 km. The 3D wear track surface topography for a WC-Co cemented 

carbide after sliding against WC-Co cemented carbide pin under a 50 N contact load is presented in 

Fig. 2. The wear depth distribution in the centre of the track appears quite uniform, with values 

around 20 µm. The outer edges of the track, however, exhibit a more inhomogeneous wear depth 

pattern, with higher damage. Similar observations were made for the ZrO2-WC ceramic composites. 
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Fig. 2. Wear scar topography for WC12Co(V) cemented carbide, slid against WC6Co(Cr/V) pin (v=0.3 m/s, s=10 

km, FN=50 N) 

Optical investigation of wear tracks of both ZrO2-WC and WC-Co surfaces reveals a polishing 

impact as a result of the sliding contact with the WC-Co pin. This is confirmed by normal roughness 

profiles, yielding much lower Ra- and Rt-values after wear testing, compared to the initial surface 

roughness.  

SEM topographies at the centre and at the outer extensions of the wear track on a wire-EDM’ed 

ZrO2-WC surface, after sliding 10 km against WC-Co pins, are compared in Fig. 3. The 

microstructure in the central part of the track mainly corresponds to the base material, i.e. the 

original microstructure is still visible and no microcracks are detected. Polishing and abrasion 

appear to be the primary wear mechanisms. At the edges of the wear track however, a thin wear 

debris layer with very fine ZrO2 and WC can be observed. Furthermore, the occurrence of 

microcracks is obvious. This phenomenon was also found at the central area of ZrO2-WC wear 

tracks, however only for higher contact loads [5]. The microcracks in the debris layer are induced by 

tangential stresses due to the reciprocal sliding movement of the cemented carbide pin on the ZrO2-

WC surface.  

The differences in wear damage and wear mechanisms within the wear surface area of ZrO2-WC 

composites and WC-Co cemented carbides can be explained in terms of friction force peaks and 

accumulation of tensile surface stresses at the outer ends during oscillating sliding contact with the 

WC-Co pin, shifting load-dependent wear transition behavior towards lower contact loads. 
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Fig. 3:  SEM surface views in the central part (a) and at the outer extension (b) of a wear track on a wire-

EDM’ed ZrO2-WC composite after sliding 10 km at 0.3 m/s under a 15 N contact load 

Conclusions 

Dry reciprocative friction experiments on ZrO2-WC composites and WC-Co cemented carbides 

sliding against WC-Co pins, revealed significant differences in wear behavior between the outer 

extensions and the central part of the wear tracks. The central ZrO2-WC wear track appears to be 

less prone to the formation of a debris layer and microcracking compared to the outer ends of the 

wear track. The wear damage in the wear tracks of both WC-Co cemented carbides and ZrO2-WC 

composites is quite higher compared to the central part. These differences can be explained in terms 

of friction force peaks as the sliding direction reverses and accumulation of tensile surface stresses 

at the outer ends during oscillating contact with the WC-Co pin, shifting load-dependent wear 

transition behavior towards lower contact loads. 
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