245 research outputs found

    Utility of CT in the diagnosis of pancreatic fistula after pancreaticoduodenectomy in patients with soft pancreas.

    Get PDF
    OBJECTIVE: The purpose of this study was to evaluate the sensitivity and specificity of routine performance of CT on postoperative day 7 in patients at high risk of pancreatic fistula after pancreaticoduodenectomy. MATERIALS AND METHODS: Two radiologists analyzed images from CT examinations of 50 patients with soft pancreas 7 days after pancreaticoduodenectomy. Pancreatic fistula was defined at CT as a fluid collection close to the pancreaticogastric or pancreaticojejunal anastomosis. Clinicobiologic criteria for the diagnosis of pancreatic fistula were drain output of any measurable volume of fluid on or after postoperative day 3 that had an amylase content more than three times the serum amylase activity. The final diagnosis of pancreatic fistula was rendered on the basis of clinicobiologic data at hospital discharge or at first readmission. RESULTS: At hospital discharge or at first readmission, 27 of 50 patients (54%) had a pancreatic fistula. On postoperative day 7, 30 patients (60%) had a total of 51 fluid collections, and CT showed a fluid collection close to the pancreaticogastric or pancreaticojejunal anastomosis in 21 of 51 cases. CT had a sensitivity of 63% (17/27 patients) and a specificity of 83% (19/23 patients) for the diagnosis of pancreatic fistula with four false-positive and 10 false-negative findings. The diagnosis of pancreatic fistula on the basis of clinicobiologic criteria on postoperative day 7 was made in 22 of 27 patients (81%), whereas five cases were false-negative. Four of these patients had CT evidence of pancreatic fistula. CONCLUSION: In patients at high risk who have undergone pancreaticoduodenectomy, systematic postoperative CT may be proposed as a complementary tool in the diagnosis of pancreatic fistula, particularly for detection of clinically occult pancreatic fistula

    Black Hole Relics in String Gravity: Last Stages of Hawking Evaporation

    Full text link
    One of the most intriguing problem of modern physics is the question of the endpoint of black hole evaporation. Based on Einstein-dilaton-Gauss-Bonnet four dimensional string gravity model we show that black holes do not disappear and that the end of the evaporation process leaves some relic. The possibility of experimental detection of the remnant black holes is investigated. If they really exist, such objects could be a considerable part of the non baryonic dark matter in our Universe.Comment: 15 pages, accepted to Class. Quant. Gra

    Graviton Emission in the Bulk from a Higher-Dimensional Schwarzschild Black Hole

    Get PDF
    We consider the evaporation of (4+n)-dimensional non-rotating black holes into gravitons. We calculate the energy emission rate for gravitons in the bulk obtaining analytical solutions of the master equation satisfied by all three types (S,V,T) of gravitational perturbations. Our results, valid in the low-energy regime, show a vector radiation dominance for every value of n, while the relative magnitude of the energy emission rate of the subdominant scalar and tensor radiation depends on n. The low-energy emission rate in the bulk for gravitons is well below that for a scalar field, due to the absence of the dominant l=0,1 modes from the gravitational spectrum. Higher partial waves though may modify this behaviour at higher energies. The calculated low-energy emission rate, for all types of degrees of freedom decreases with n, although the full energy emission rate, integrated over all frequencies, is expected to increase with n, as in the previously studied case of a bulk scalar field.Comment: 17 pages, 2 figures, minor corrections, accepted by Phys. Lett.

    The Ring Imaging Cherenkov detector (RICH) of the AMS experiment

    Full text link
    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.Comment: 29th International Conference on Cosmic Rays (Pune, India

    The AMS-RICH velocity and charge reconstruction

    Full text link
    The AMS detector, to be installed on the International Space Station, includes a Ring Imaging Cerenkov detector with two different radiators, silica aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to provide very precise measurements of velocity and electric charge in a wide range of cosmic nuclei energies and atomic numbers. The detector geometry, in particular the presence of a reflector for acceptance purposes, leads to complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The results of different reconstruction methods applied to test beam data as well as to simulated samples are presented. To ensure nominal performances throughout the flight, several detector parameters have to be carefully monitored. The algorithms developed to fulfill these requirements are presented. The velocity and charge measurements provided by the RICH detector endow the AMS spectrometer with precise particle identification capabilities in a wide energy range. The expected performances on light isotope separation are discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F. Bara

    Hydrodynamics of R-charged D1-branes

    Full text link
    We study the hydrodynamic properties of strongly coupled SU(N)SU(N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/4π1/4\pi. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.Comment: 57 pages, 12 figure

    The RICH detector of the AMS-02 experiment: status and physics prospects

    Full text link
    The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV. It is equipped with several subsystems, one of which is a proximity focusing RICH detector with a dual radiator (aerogel+NaF) that provides reliable measurements for particle velocity and charge. The assembly and testing of the AMS RICH is currently being finished and the full AMS detector is expected to be ready by the end of 2008. The RICH detector of AMS-02 is presented. Physics prospects are briefly discussed.Comment: 5 pages. Contribution to the 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como 2007). Presenter: Rui Pereir

    General Analysis of Antideuteron Searches for Dark Matter

    Full text link
    Low energy cosmic ray antideuterons provide a unique low background channel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.Comment: 44 pages, 15 Figure

    CHERCAM: A Cherenkov imager for the CREAM experiment

    No full text
    International audienceThe CREAM experiment (Cosmic Ray Energetics and Mass) is dedicated to the measurement of the energy spectrum of nuclear elements in cosmic rays, over the range 1012^{12} to 1015^{15} eV. The individual elements separation, which is a key feature of CREAM, requires instruments with strong identification capabilities. A proximity focused type of Cherenkov imager, CHERCAM (CHERenkov CAMera), providing both a good signature of downgoing Z=1 particles and good single element separation through the whole range of nuclear charges [Buénerd et al. 28th ICRC, Tsukuba, OG 1.5, 2003, p. 2157], is under development. After a brief introduction, the main features and the construction status of the CHERCAM are being summarized

    Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black holes using third order WKB approach

    Full text link
    We obtain the quasinormal modes for tensor perturbations of Gauss-Bonnet (GB) black holes in d=5,7,8d=5, 7, 8 dimensions and vector perturbations in d=5,6,7d = 5, 6, 7 and 8 dimensions using third order WKB formalism. The tensor perturbation for black holes in d=6d=6 is not considered because of the fact that it is unstable to tensor mode perturbations. In the case of uncharged GB black hole, for both tensor and vector perturbations, the real part of the QN frequency increases as the Gauss-Bonnet coupling (α\alpha') increases. The imaginary part first decreases upto a certain value of α\alpha' and then increases with α\alpha' for both tensor and vector perturbations. For larger values of α\alpha', the QN frequencies for vector perturbation differs slightly from the QN frequencies for tensorial one. It has also been shown that as α0\alpha' \to 0, the quasinormal mode frequency for tensor and vector perturbation of the Schwarzschild black hole can be obtained. We have also calculated the quasinormal spectrum of the charged GB black hole for tensor perturbations. Here we have found that the real oscillation frequency increases, while the imaginary part of the frequency falls with the increase of the charge. We also show that the quasinormal frequencies for scalar field perturbations and the tensor gravitational perturbations do not match as was claimed in the literature. The difference in the result increases if we increase the GB coupling.Comment: 17 pages, 11 figures, change in title and abstract, new equations and results added for QN frequencies for vector perturbations, new referencees adde
    corecore