784 research outputs found

    Berry's phase in noncommutative spaces

    Get PDF
    We introduce the perturbative aspects of noncommutative quantum mechanics. Then we study the Berry's phase in the framework of noncommutative quantum mechanics. The results show deviations from the usual quantum mechanics which depend on the parameter of space/space noncommtativity.Comment: 7 pages, no figur

    Heisenberg quantization for the systems of identical particles and the Pauli exclusion principle in noncommutative spaces

    Get PDF
    We study the Heisenberg quantization for the systems of identical particles in noncommtative spaces. We get fermions and bosons as a special cases of our argument, in the same way as commutative case and therefore we conclude that the Pauli exclusion principle is also valid in noncommutative spaces.Comment: 8 pages, 1 figur

    Activation of sperm motility in the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859) acclimatized to fresh, sea and hypersaline waters

    Get PDF
    The effects of osmolality and ions were examined on motility of sperm from males of Sarotherodon melanotheron heudelotii acclimatized in tanks at salinities set at 0, 35 and 70 g L-1. The range of osmolality that enabled sperm activation, shifted and broadened as the maintenance salinity of broodfish increased. The requirement of extracellular Ca2+ for activation of sperm motility increased when the maintenance salinity of broodfish was higher

    Dynamics of continuous-time quantum walks in restricted geometries

    Full text link
    We study quantum transport on finite discrete structures and we model the process by means of continuous-time quantum walks. A direct and effective comparison between quantum and classical walks can be attained based on the average displacement of the walker as a function of time. Indeed, a fast growth of the average displacement can be advantageously exploited to build up efficient search algorithms. By means of analytical and numerical investigations, we show that the finiteness and the inhomogeneity of the substrate jointly weaken the quantum walk performance. We further highlight the interplay between the quantum-walk dynamics and the underlying topology by studying the temporal evolution of the transfer probability distribution and the lower bound of long time averages.Comment: 25 pages, 13 figure

    Orders of magnitude increased accuracy for quantum many-body problems on quantum computers via an exact transcorrelated method

    Get PDF
    Transcorrelated methods provide an efficient way of partially transferring the description of electronic correlations from the ground-state wave function directly into the underlying Hamiltonian. In particular, Dobrautz et al. [Phys. Rev. B 99, 075119 (2019)2469-995010.1103/PhysRevB.99.075119] have demonstrated that the use of momentum-space representation, combined with a nonunitary similarity transformation, results in a Hubbard Hamiltonian that possesses a significantly more "compact"ground-state wave function, dominated by a single Slater determinant. This compactness/single-reference character greatly facilitates electronic structure calculations. As a consequence, however, the Hamiltonian becomes non-Hermitian, posing problems for quantum algorithms based on the variational principle. We overcome these limitations with the Ansatz-based quantum imaginary-time evolution algorithm and apply the transcorrelated method in the context of digital quantum computing. We demonstrate that this approach enables up to four orders of magnitude more accurate and compact solutions in various instances of the Hubbard model at intermediate interaction strength (U/t=4), enabling the use of shallower quantum circuits for wave-function Ans\ue4tzes. In addition, we propose a more efficient implementation of the quantum imaginary-time evolution algorithm in quantum circuits that is tailored to non-Hermitian problems. To validate our approach, we perform hardware experiments on the ibmq_lima quantum computer. Our work paves the way for the use of exact transcorrelated methods for the simulations of ab initio systems on quantum computers

    Ab Initio Transcorrelated Method enabling accurate Quantum Chemistry on near-term Quantum Hardware

    Full text link
    Quantum computing is emerging as a new computational paradigm with the potential to transform several research fields, including quantum chemistry. However, current hardware limitations (including limited coherence times, gate infidelities, and limited connectivity) hamper the straightforward implementation of most quantum algorithms and call for more noise-resilient solutions. In quantum chemistry, the limited number of available qubits and gate operations is particularly restrictive since, for each molecular orbital, one needs, in general, two qubits. In this study, we propose an explicitly correlated Ansatz based on the transcorrelated (TC) approach, which transfers -- without any approximation -- correlation from the wavefunction directly into the Hamiltonian, thus reducing the number of resources needed to achieve accurate results with noisy, near-term quantum devices. In particular, we show that the exact transcorrelated approach not only allows for more shallow circuits but also improves the convergence towards the so-called basis set limit, providing energies within chemical accuracy to experiment with smaller basis sets and, therefore, fewer qubits. We demonstrate our method by computing bond lengths, dissociation energies, and vibrational frequencies close to experimental results for the hydrogen dimer and lithium hydride using just 4 and 6 qubits, respectively. Conventional methods require at least ten times more qubits for the same accuracy

    Ensemble density-functional theory for ab-initio molecular dynamics of metals and finite-temperature insulators

    Full text link
    A new method is presented for performing first-principles molecular-dynamics simulations of systems with variable occupancies. We adopt a matrix representation for the one-particle statistical operator Gamma, to introduce a ``projected'' free energy functional G that depends on the Kohn-Sham orbitals only and that is invariant under their unitary transformations. The Liouville equation [ Gamma , H ] = 0 is always satisfied, guaranteeing a very efficient and stable variational minimization algorithm that can be extended to non-conventional entropic formulations or fictitious thermal distributions.Comment: 5 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_meta

    CP Violation in SUSY

    Full text link
    Supersymmetry exhibts new sources of CP violation. We discuss the implications of these new contributions to CP violation both in the K and B physics. We show that CP violation puts severe constraints on low energy SUSY, but it represents also a promising ground to look for signals of new physics.Comment: 10 pages, 2 figures. Invited talk by A. Masiero at Ferrara 2000, CP violation physic

    Binary systems of neutral mesons in Quantum Field Theory

    Full text link
    Quasi-degenerate binary systems of neutral mesons of the kaon type are investigated in Quantum Field Theory (QFT). General constraints cast by analyticity and discrete symmetries P, C, CP, TCP on the propagator (and on its spectral function) are deduced. Its poles are the physical masses; this unambiguously defines the propagating eigenstates. It is diagonalized and its spectrum thoroughly investigated. The role of ``spurious'' states, of zero norm at the poles, is emphasized, in particular for unitarity and for the realization of TCP symmetry. The K_L-K_S mass splitting triggers a tiny difference between their CP violating parameters \epsilon_L and \epsilon_S, without any violation of TCP. A constant mass matrix like used in Quantum Mechanics (QM) can only be introduced in a linear approximation to the inverse propagator, which respects its analyticity and positivity properties; it is however unable to faithfully describe all features of neutral mesons as we determine them in QFT, nor to provide any sensible parameterization of eventual effects of TCP violation. The suitable way to diagonalize the propagator makes use of a bi-orthogonal basis; it is inequivalent to a bi-unitary transformation (unless the propagator is normal, which cannot occur here). Problems linked with the existence of different ``in'' and ``out'' eigenstates are smoothed out. We study phenomenological consequences of the differences between the QFT and QM treatments. The non-vanishing of semi-leptonic asymmetry \delta_S - \delta_L does not signal, unlike usually claimed, TCP violation, while A_TCP keeps vanishing when TCP is realized. We provide expressions invariant by the rephasing of K0 and K0bar.Comment: 44 pages, 2 figures. Version to appear in Int. J. Mod. Phys.
    • …
    corecore