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Transcorrelated methods provide an efficient way of partially transferring the description of electronic cor-
relations from the ground-state wave function directly into the underlying Hamiltonian. In particular, Dobrautz
et al. [Phys. Rev. B 99, 075119 (2019)] have demonstrated that the use of momentum-space representation,
combined with a nonunitary similarity transformation, results in a Hubbard Hamiltonian that possesses a
significantly more “compact” ground-state wave function, dominated by a single Slater determinant. This
compactness/single-reference character greatly facilitates electronic structure calculations. As a consequence,
however, the Hamiltonian becomes non-Hermitian, posing problems for quantum algorithms based on the
variational principle. We overcome these limitations with the Ansatz-based quantum imaginary-time evolution
algorithm and apply the transcorrelated method in the context of digital quantum computing. We demonstrate that
this approach enables up to four orders of magnitude more accurate and compact solutions in various instances
of the Hubbard model at intermediate interaction strength (U/t = 4), enabling the use of shallower quantum
circuits for wave-function Ansätzes. In addition, we propose a more efficient implementation of the quantum
imaginary-time evolution algorithm in quantum circuits that is tailored to non-Hermitian problems. To validate
our approach, we perform hardware experiments on the ibmq_lima quantum computer. Our work paves the way
for the use of exact transcorrelated methods for the simulations of ab initio systems on quantum computers.

DOI: 10.1103/PhysRevResearch.5.023174

I. INTRODUCTION

Understanding and predicting the properties of materials
and chemical systems is of paramount importance for the de-
velopment of natural sciences and technology. To achieve this
goal, classical computers are used to solve, at least approxi-
mately, the corresponding quantum mechanical equations and
extract the quantities of interest. However, performing this
type of calculation is a notoriously hard problem since the
dimension of the many-body wave function scales exponen-
tially with the number of degrees of freedom (e.g., number
of electrons) [1]. This poses an important limitation on the
size of accurately simulatable physical systems and makes the
majority of them inaccessible on classical computers.
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Quantum computing, on the other hand, is emerging as a
new computational paradigm for the solution of many classi-
cally hard problems, including the solution of the many-body
Schrödinger equation of strongly correlated systems. Nowa-
days, quantum computers are at the forefront of scientific
research thanks to ground-breaking hardware demonstrations
including (real-time) error mitigation [2] and error-correction
schemes [3], paving the way for large near-term quantum cal-
culations on noisy quantum hardware (with physical qubits),
followed, in the near future, by fault-tolerant calculations with
logical qubits [4,5]. From an algorithmic perspective, quan-
tum computers can provide scaling advantages in the compu-
tation of the ground- and excited-state properties (of isolated
and periodic systems) [6–10], vibrational structure calcula-
tions [11–13], configuration space sampling (such as protein
folding) [14,15], molecular and quantum dynamics [16–18],
and lattice gauge theory [19,20], just to mention a few.

The currently most popular quantum optimization al-
gorithm for electronic structure calculations is the vari-
ational quantum eigensolver (VQE) [7,8,21–23]. It is a
well-tested and well-developed hybrid quantum-classical ap-
proach: Quantum hardware is used to efficiently represent
an arbitrary wave-function Ansatz |�(θ)〉, and measure the
expectation value of a chosen observable 〈�(θ)| Ô |�(θ)〉, in
conjunction with a classical computer which performs the
optimization of the (quantum gate) parameters θ until a chosen
cost function of the observable Ô (e.g., the energy in elec-
tronic structure calculations) is minimized. However, most
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importantly for the scope of this work, the VQE algorithm is
applicable only in the case where the cost function that drives
the optimization of the parameters is Hermitian.

As an alternative to VQE, imaginary-time evolution [24]
can be used to drive an initial wave-function guess towards
the optimal ground-state solution. In particular, the variational
Ansatz-based quantum imaginary-time evolution (VarQITE)
algorithm is a powerful method for the calculation of the
ground state of quantum systems by simulating the nonunitary
dynamics on quantum computers [25]. Using the McLachlan
variational principle [26] it is possible to describe time evo-
lution by means of a fixed-length variational circuit, whose
parameters evolve according to a well-defined equation of
motion which is solved classically. For a detailed analysis of
this approach we refer to the original literature [27]. Appli-
cations of the VarQITE algorithm include, for instance, the
determination of ground and excited states [24,28], the train-
ing of quantum machine-learning models [29], the simulation
of quantum field theories [30], the solution of linear systems
of equations [31,32] and combinatorial optimization problems
[33], and the pricing of financial options [34]. Recent algorith-
mic developments include the addition of adaptive Ansätzes
[35], hardware-efficient approaches [36], and derivation of
robust error bounds [37].

Both the VQE and VarQITE approaches require suffi-
ciently expressive Ansätzes for the representation of the
targeted ground-state wave function [6,25,27,38,39], which
would need exponentially many parameters for an exact so-
lution. However, it was shown that a polynomial number of
variational parameters (single-qubit rotations) is sufficient to
achieve accurate results within a given error threshold [40,41].
In this framework, we can therefore aim at solving interest-
ing electronic structure problems using state-of-the-art noisy
quantum devices (with limited coherence times and uncor-
rected gate operations) with relatively shallow circuits.

Despite these advancements, one of the major limitations
of the application of current quantum algorithms to model
systems, like the Hubbard model and the electronic struc-
ture problem, is the severely limited number of qubits. To
map such problems to quantum computers, the corresponding
second-quantized Hamiltonian is typically transformed into
a qubit representation using a fermion-to-qubit transforma-
tion, such as the Jordan-Wigner transformation [42]. This
transformation relates one qubit to each single-particle orbital
associated with the system of interest. In the field of quan-
tum chemistry, this is amplified by the need for large basis
set expansion (and consequently qubits) to capture dynamic
correlation effects induced by the divergence of the Coulomb
potential and, therefore, to deal with the nondifferentiable be-
havior of the electronic wave function at electron coalescence,
known as Kato’s cusp condition [43,44]. As a consequence,
various theories and approaches [45–48] that aim to explicitly
capture these dynamic correlation effects and obtain more
accurate results in smaller basis sets exist in the field of
computational chemistry, the most notable being the explic-
itly correlated R12 and F12 methods [49–60]. It is a very
active field of research to exploit similar approaches in the
field of quantum computing to reduce the quantum resources
necessary to obtain accurate results for realistic systems on
near-term quantum devices [61–65].

In this work we use the so-called transcorrelated (TC)
method, introduced by Hirschfelder [66] and Boys and Handy
[67–69], and apply it to a lattice Hamiltonian in the form of the
Hubbard model. The TC method was originally conceived in
the field of ab initio quantum chemistry to exactly incorporate
electronic correlation effects, via a correlated Jastrow Ansatz
[70] for the wave function, directly into the Hamiltonian by
a similarity transformation (ST). In molecular and ab initio
TC approaches, one typically works with incomplete bases
(finite basis sets), where the main benefit of TC is to reach
the complete basis set limit quicker (i.e., higher accuracy is
reached with a smaller basis set) [71,72]. However, the same
basic concept can be applied to any problem, thus facili-
tating the subsequent solution. In the case of the Hubbard
model in conjunction with a Gutzwiller correlator [73,74],
the ST introduces higher-order interaction terms and renders
the Hamiltonian non-Hermitian. Nevertheless, in contrast to
ab initio systems, the Hubbard model (in its original one-band
formulation) is defined as a lattice model with one orbital per
lattice site. In such a complete basis, the ST does not change
the spectrum of the Hamiltonian. In this case, the benefit of
the TC method is to make the solution more compact [75], and
thus easier to represent with shallow quantum circuits, while
yielding the same accuracy. As a consequence of the non-
Hermiticity, the variational principle does not apply anymore,
and we have to rely on methods like VarQITE to solve the
problem on a quantum computer. (Another possible approach
is to use VQE based on the variance cost function [76,77],
but this would require to square the Hamiltonian and hence
presents a significant overhead in terms of measurements
[78].)

Following the approach of Dobrautz et al. [75], McArdle
and Tew [78] recently investigated the exact non-Hermitian
TC formulation of the Hubbard Hamiltonian in the real-space
representation in the context of quantum computing. They
investigated the beneficial effect of the TC approach on the
quantum footprint that is caused by a more compact/single-
reference right eigenvector. The advantages were demon-
strated in numerical simulations using the VarQITE algorithm,
however, without the complete implementation of the corre-
sponding quantum circuits. Additionally, McArdle and Tew
used the TC approach in the real-space representation of the
Hubbard model, which, however, does not display the same
level of compactification of the ground-state wave function as
in a momentum-space representation [75].

In this work, we expand and complement the study of
McArdle and Tew [78] by implementing the full algorithm
as would be executed on a quantum computer. To validate
our approach, we perform experiments on the IBM quan-
tum computer ibmq_lima. In addition, following Dobrautz
et al. [75], we investigate the formulation of the TC Hubbard
Hamiltonian in the momentum space, for which we expect an
increased efficiency of our method (compared to real space)
while approaching the complexity of ab initio chemical prob-
lems (i.e., the presence of a three-body term). Thus, this
study on the TC Hubbard model in the momentum space will
pave the way for future extensions to more general ab initio
Hamiltonians.

The paper is structured as follows. In Sec. II A, we sum-
marize the general theory of the exact TC method. The (TC)

023174-2



ORDERS OF MAGNITUDE INCREASED ACCURACY FOR … PHYSICAL REVIEW RESEARCH 5, 023174 (2023)

Hubbard Hamiltonians in real and reciprocal spaces are de-
fined in Sec. II B. In Sec. II C, we discuss the application
of the VarQITE algorithm to a non-Hermitian problem. The
methods, including the details of the implementation in quan-
tum computers, are given in Sec. III. We discuss the results
of our experiments and simulations in Sec. IV. Finally, in
Sec. V, we present our conclusions on the advantages and
limitations of the exact TC method and present our views on
future developments.

II. THEORY

In this section, we review the transcorrelated approach in
the classical and quantum frameworks and introduce methods
for the optimization of the ground-state wave function.

A. Transcorrelated method

The transcorrelated method was introduced by Boys and
Handy [67–69], who suggested incorporating the effect of
a correlated wave-function Ansatz, in the form of a Jastrow
Ansatz [70]

|�〉 = eĝ |�〉 , (1)

directly into the many-body fermionic Hamiltonian via a sim-
ilarity transformation

Ĥ → e−ĝĤeĝ = ĤTC. (2)

In the work of Boys and Handy, ĝ(r) represents a pair-
wise symmetric real function dependent on the interelectronic
distances with n electrons located at r = (r1, r2, . . . , rn) co-
ordinates, which is able to exactly incorporate the electronic
cusp condition [43]. In the original work, Boys and Handy
used a single Slater determinant (SD), |�〉 = |φ0〉, and op-
timized both the single-particle orbitals comprising |φ0〉 as
well as the terms in the Jastrow factor ĝ(r). In this work,
we follow the approach of Dobrautz et al. [75] and use a
previously optimized fixed Jastrow factor, but allow complete
flexibility to the wave-function expansion |�〉 = ∑

ci |φi〉.
Using a fixed Jastrow factor, but allowing a full flexibility to
the SD expansion of the fermionic many-body wave function
in the TC approach was for the first time studied by Luo and
Alavi [79] for the homogeneous electron gas, Dobrautz et al.
[75] for the Hubbard model, Cohen et al. [71] for the ab initio
treatment of the first row atoms, and Guther et al. [80] for the
binding curve of the beryllium dimer by combination with the
full configuration quantum Monte Carlo (FCIQMC) method
[81–85]. In a complete basis, the ST, Eq. (2), does not change
the spectrum of Ĥ :

e−ĝE |�〉 = e−ĝĤ |�〉 = e−ĝĤeĝ |�〉 = ĤTC |�〉 = E |�〉 .

(3)

However, as the transformed ĤTC is not Hermitian anymore
(since ĝ† = ĝ) it possesses different left and right eigenvec-
tors, which form a biorthogonal basis with 〈�L

i |�R
j 〉 = 0 for

i �= j. The loss of unitarity and the variational principle seems
like a high price to pay, as standard methods in conven-
tional computational chemistry and physics, as well as in the
field of quantum computing, like the phase estimation algo-
rithm [86,87] and VQE [21,22], are not applicable anymore.

However, Dobrautz et al. [75], found that the TC approach
leads to more compact and single-reference right eigenvec-
tors, with dramatic positive effects on projective methods.
Consequently, Motta et al. [88], and recently Schleich et al.
[63] and Kumar et al. [89], were able to show the benefits
of similar approaches on a quantum device, by reducing the
problem complexity to achieve a desired accuracy. However,
these studies targeted ab initio systems and, more impor-
tantly, they used an approximated transcorrelated approach,
which overcomes the problems associated to a non-Hermitian
Hamiltonian with three-body terms, at the cost of a reduc-
tion in accuracy. As a representative example, we study the
exact TC approach applied to the Hubbard model and show
the benefits of a correlated wave-function Ansatz to achieve
accurate results with fewer quantum resources and introduce
an efficient approach to study non-Hermitian problems with
the VarQITE algorithm in general.

In the next section, we define the Hubbard model Hamil-
tionian in the real- and momentum-space representations,
including their exact TC versions. Then, the VarQITE algo-
rithm is presented with the corresponding quantum circuits.

B. Hubbard Hamiltonian and Gutzwiller Ansatz

The fermionic Hubbard model [73,90–92] is an extensively
studied minimal model of itinerant strongly correlated elec-
trons. Despite its simplicity, it possesses a rich phase diagram
and is used to study the physics of high-temperature cuprate
superconductors [93–96]. Exact solutions only exist in the
limit of one [97,98] and infinite dimensions [99–101], while
the study of the two-dimensional model is a very active field
of research [102–105]. The real-space representation (r su-
perscript) of the Hubbard Hamiltonian for a two-dimensional
lattice is given by

Ĥ r = −t
∑
〈i, j〉

∑
σ

â†
i,σ â j,σ + U

N∑
i

n̂i,↑n̂i,↓, (4)

where the indices i = (ix, iy) and j = ( jx, jy) indicate the
real-space lattice positions, 〈i, j〉 denotes a summation over
nearest neighbors, and N is the number of lattice sites. â†

i,σ is
the creation operator of an electron on site i with spin σ ∈
{↑,↓}, while âi,σ and n̂i,σ = â†

i,σ âi,σ are the corresponding
electronic annihilation and number operators. The first term
in Eq. (4) represents the electron hopping while the second
one denotes the electron interaction with associated parame-
ters t � 0 and U � 0, for the fermionic Hubbard model. The
U/t ratio defines their relative strength and also the charac-
ter of the ground state (single reference or multireference)
with intermediate values, 4 � U/t � 12, corresponding to the
strongly correlated regime with a multireference ground state.
Following the general convention, energies are given in units
of t , and thus the Coulomb repulsion strength U remains the
sole parameter of the model.

Substituting the Fourier transform of the electronic cre-
ation and annihilation operators ĉ†

k,σ
= 1/

√
N

∑
r e−ik·râ†

r,σ

and ĉk,σ = 1/
√

N
∑

r eik·râr,σ into Eq. (4) yields the
momentum-space representation (m superscript) of the
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Hubbard model

Ĥm =
∑
k,σ

εkn̂k,σ + U

2N

∑
p,q,k,σ

ĉ†
p−k,σ

ĉ†
q+k,σ̄

ĉq,σ̄ ĉp,σ , (5)

where ĉ†
k,σ

and ĉk,σ operators, respectively, create and an-
nihilate an electron with momentum k = (kx, ky) and spin
σ ; the opposite spin to σ is denoted as σ̄ . For a two-
dimensional square lattice, the dispersion relation is given
by εk = −2t[cos(kx ) + cos(ky)]. In one dimension, it is given
by εk = −2t cos(kx ). The Hamiltonians in the real and mo-
mentum space contain up to two-body interactions. Due to
the diagonal two-body part in Eq. (4) and the restriction to
nearest-neighbor hopping, the number of terms in the real-
space Hubbard model scale as O(N ). On the other hand,
because of momentum conservation, the terms of the k-space
Hubbard model (5) scale as O(N3).

Next, we present the TC version of the real-space Hub-
bard Hamiltonian defined in Eq. (4). Following Tsuneyuki
[77] and Dobrautz et al. [75], we use a Gutzwiller correlator
[73,74,106]

ĝ = J
∑

i

n̂i,↑n̂i,↓ (6)

for our correlated wave-function Ansatz. The action of Eq. (6)
is the same as the two-body part of the Hubbard Hamiltonian
in the real space [see Eq. (4)] and counts the number of doubly
occupied sites in a state |φi〉, weighted with an optimizable pa-
rameter J . The Gutzwiller Ansatz is a widely studied approach
to solve the Hubbard model [93,99,107,108], where the pa-
rameter J is usually optimized to minimize the energy with
variational Monte Carlo (VMC) methods [109,110]. Although
it misses important correlations, especially in the large-U
regime [111–113], it does provide good energy estimates for
the low- to intermediate-interaction strengths. In this parame-
ter regime, the use of the momentum-space formulation of the
Hubbard model is preferable, as the Fermi-sea (Hartree-Fock)
determinant provides a good (single-)reference state for the
ground-state wave function.

With the Gutwiller Ansatz (6), the corresponding TC
Hamiltonian (2) can be expressed in closed form, using
the Baker-Campbell-Hausdorff formula exactly resummed
to all orders. The resulting TC Hamiltonian is derived in
Refs. [75,77,114] and given by

Ĥ r
TC = Ĥ r − t

∑
〈i, j〉,σ

â†
i,σ â j,σ [(eJ − 1)n̂ j,σ̄

+ (e−J − 1)n̂i,σ̄ − 2[cosh(J ) − 1]n̂i,σ̄ n̂ j,σ̄ ], (7)

with Ĥ r being the original real-space Hubbard Hamiltonian
(4). In contrast to the approximate unitary version of the TC
approach [88], this transformation (7) is exact. An equiv-
alent Hamiltonian can be written in the momentum space
by applying the Fourier transform of the fermionic opera-
tors as was done for Eq. (5) with details given in Ref. [75].
The Hamiltonian defined in Eq. (7) reads in the momentum

space as

Ĥm
TC = Ĥm −

∑
p,q,k,σ

Dp,q,kĉ†
p−k,σ

ĉ†
q+k,σ̄

ĉq,σ̄ ĉp,σ

+ T
∑

p,q,s,k,k′,σ
p′=p−k+k′

εp′ ĉ†
p−k,σ

ĉ†
q+k′,σ̄ ĉ†

s+k−k′,σ̄ ĉs,σ̄ ĉq,σ̄ ĉp,σ

(8)

with Dp,q,k = t
N [(eJ−1)εp−k + (e−J−1)εp], T =2t cosh(J )−1

N2 ,

and Ĥm being the original momentum-space Hubbard Hamil-
tonian (5). The much more compact right eigenvector of the
Hamiltonian Ĥm

TC [75] [Eq. (8)] allowed the limited applica-
bility of FCIQMC to be extended to lattice models [115,116].
Both the TC real- and momentum-space Hubbard Hamilto-
nians (7) and (8) are non-Hermitian, due to the modified
two-body term, and have up to three-body interactions. The
number of terms in the real-space TC Hubbard Hamiltonian
(7) still scales linearly with the number of sites N , while in
the TC momentum-space case, Eq. (8), we end up with O(N5)
terms.

C. Quantum imaginary-time evolution

The (normalized) imaginary-time evolution is defined as

|�(τ )〉 = e−Ĥτ |�(0)〉√
〈�(0)|e−2Ĥτ |�(0)〉

, (9)

where |�(0)〉 is some initial state. In the infinite-time limit, the
ground state of Ĥ is obtained only if |�(0)〉 and that ground
state have a nonzero overlap. Note that this is also valid for the
non-Hermitian Hamiltonians [78]. To implement the nonuni-
tary evolution defined in Eq. (9) on a quantum computer, the
Wick-rotated Schrödinger equation can be written as

∂ |�(τ )〉
∂τ

= −(Ĥ − E ) |�(τ )〉 , (10)

where τ = it is the imaginary time and E =
Re[〈�(τ )|Ĥ |�(τ )〉] is the energy of the system. McLachlan’s
variational principle applied to Eq. (10) yields

δ‖(∂/∂τ + Ĥ − E ) |�(τ )〉 ‖ = 0. (11)

This equation can be defined for each variational parameter
θi, ∂

∂θ̇i
‖(∂/∂τ + Ĥ − E ) |�(τ )〉 ‖ = 0, where we assume the

dependence θi(τ ) for i = {0, . . . , Np − 1} and Np is the num-
ber of variational parameters. Its solution leads to a system of
equations

Aθ̇ = −C, (12)

with the matrix A given by its elements

Ai j = 1

2

(
∂ 〈�(τ )|

∂θi

∂ |�(τ )〉
∂θ j

+ ∂ 〈�(τ )|
∂θ j

∂ |�(τ )〉
∂θi

)

= Re

(
∂ 〈�(τ )|

∂θi

∂ |�(τ )〉
∂θ j

)
,

(13)
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and the gradient C, with its elements given by

Ci = 1

2

(
∂ 〈�(τ )|

∂θi
Ĥ |�(τ )〉 + 〈�(τ )| Ĥ† ∂ |�(τ )〉

∂θi

)

− 1

2

(
E

∂ 〈�(τ )|
∂θi

|�(τ )〉 + E∗ 〈�(τ )| ∂ |�(τ )〉
∂θi

)

= Re

(
∂ 〈�(τ )|

∂θi
Ĥ |�(τ )〉

)
. (14)

We stress once more that although the similarity transformed
Hamiltonian is non-Hermitian, it has an unchanged spectrum
in a complete basis. Additionally, since all operators and co-
efficients in the Hamiltonians (4) and (5) and the Gutzwiller
Ansatz (6) are real, the energy expectation value of any real-
valued wave-function Ansatz, 〈�(τ )|Ĥ r/m

(TC)|�(τ )〉, for both the
original and transcorrelated versions, remains real. Thus, there
are no contributions from the terms in the second line of
Eq. (14) as shown in Ref. [78]. Equation (12) defines the
imaginary evolution of the wave function projected onto the
space of all possible states that can be represented by a given
Ansatz, the so-called Ansatz space [25]. The state evolution is
guided not only by the gradients C but also the metric in the
parameter space A, which takes into account the structure of
the Ansatz [27]. The Euler method is then employed to update
the variational parameters θ(k) at iteration k as

θ(k + 1) = θ(k) − �tA−1C. (15)

The scaling of the algorithm in terms of measurements is
O(NCNpNH + NAN2

p ) where NC, NA are the number of mea-
surements to obtain a required accuracy for C and A matrix
elements, respectively, and NH is the number of terms in
the Hamiltonian. Despite the large number of measurements,
VarQITE guarantees the convergence to the ground state of
non-Hermitian Hamiltonians where VQE algorithms would
require the use of the variance as the cost function, requiring
to square the Hamiltonian. The VarQITE algorithm requires
the inversion of matrix A [or the solution of the linear system
in Eq. (15)] with, for instance, the Tikhonov regularization
[25] that stabilizes the evolution of variational parameters.
These steps present potential sources of instabilities for
the simulation. Recently, inversion- and regularization-free
approaches were also proposed [37] by formulating the equa-
tion of VarQITE as a quadratic optimization problem. Despite
possessing an error-prone classical optimization step, the ad-
vantage resides in quantifiable error bounds. However, for our
systems, the standard VarQITE with Tikhonov regularization
performed best, thus it is used in the rest of this work. See
Appendix B for additional details.

III. METHODS

The TC method necessitates the determination of the op-
timal value of the parameter J associated to the Gutzwiller
Ansatz. For its optimization we can use two independent
methods: (1) an efficient representation-independent VMC
procedure (polynomially scaling in time) as described in
Refs. [117–123] and (2) an even cheaper projection method
of the TC Hamiltonian, inspired from the coupled cluster

amplitude equations [75,114] (with a single amplitude J in
this case), in the momentum-space formulation (see Ap-
pendix C for more details). Throughout the work, we optimize
J for the half-filled ground state (see Fig. 1 for a sketch). In
this case, both methods yield similar values of J for which
the right eigenvector of the momentum-space TC Hamilto-
nian, Ĥm

TC(J ), is most “compact” [75], meaning that largest
component of the wave function is represented by the Hartree-
Fock/Fermi-sea state. As the VMC procedure is independent
of the basis, we also use the same value of J for the real-space
TC calculation, where the right eigenvector has a similar,
albeit less pronounced, compact character [77,78].

All quantum simulations are performed with QISKIT [125].
Hamiltonians are mapped to the qubit space using the Jordan-
Wigner transformation [42], that allows to express them as
Ĥ = ∑

i liP̂i where P̂i denotes a Pauli string (tensor prod-
uct of Pauli operators), and li is the associated (complex)
coefficient. Calculations are performed using the matrix and
state-vector representations (SV) for the Hamiltonian and the
wave-function Ansatz. They represent the idealistic simula-
tions that could be obtained without the hardware noise and
in the infinite number of measurements limit. In addition, we
perform simulations that include the realistic noise model of
the ibmq_lima quantum chip. We use the quantum assembly
language (QASM) description of the operators (represented
by a sum of Pauli strings) as well as the wave functions
(represented by quantum circuits). For additional details about
the device and its noise model, see Appendix G. For both
hardware and QASM simulations, we employ the readout
error mitigation [126] as implemented in QISKIT.

In the VQE simulations, the optimization of variational
parameters is performed by means of a classical optimiza-
tion algorithm: limited-memory Broyden-Fletcher-Goldfarb-
Shanno with boundary constraints (L-BFGS-B) [127] with the
convergence criterion set to 10−7. In the VarQITE and SV
simulations, the derivatives of wave functions with respect to
variational parameters are obtained using the forward finite-
differences method [128] with the step size of 10−9.

To demonstrate the potential of our algorithm, we will
use the quantum unitary coupled-cluster singles doubles
(qUCCSD) Ansatz to approximate the ground state in SV
simulations (see Appendix D for additional details). As we
will show below, the benefit of the TC method consists in a
reduction of the required circuit depth due to a more com-
pact ground-state wave function, which is independent from
the nature of the chosen Ansatz. In the following examples,
we will apply the qUCCSD Ansatz as it is a widely used
wave-function form in current quantum computing literature,
especially in solid-state physics and electronic structure the-
ory. Additionally, the UCCSD Ansatz is very suited for the
momentum-space Hubbard model, particularly in the case of
small-U values, as the ground state is dominated by a single
SD. On the other hand, other recently developed Ansätze
like the variational Hamiltonian Ansatz [129] could also be
employed within the same approach. The qUCCSD cluster
operator is first written as a quantum circuit (see Ref. [130]),
subsequently transformed into a unitary matrix, and finally
applied on an initial state vector. For the latter, the ground
state of the noninteracting Hubbard model (t = 1, U = 0) is
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FIG. 1. (a) Hybrid quantum-classical procedure employed to perform VarQITE. First, the Gutzwiller Ansatz is optimized by VMC or
projection on a classical computer. The resulting TC Hubbard Hamiltonian is represented as a sum of Pauli strings by a fermion-to-qubit
mapping (e.g., Jordan-Wigner). The initial parameter values θ and the list of necessary Pauli-string measurements are sent to the quantum
computer. Given a wave-function Ansatz |�(θ)〉 = U (θ) |�0〉, the matrix elements of the metric Anew

i j and the gradient Cnew
i are measured using

the differentiation of general gates via a linear combination of unitaries represented as W (θ) [124]. Finally, the linear system derived from
McLachlan’s variational principle is solved and by applying the Euler method, we obtain the parameters θnew of the next time step. The whole
procedure is repeated until convergence (i.e., Euclidean norm of the gradient is below a set threshold). (b) Optimization of the Jastrow parameter
J . We show that when J ≈ Jproj or J ≈ JVMC, the ground state of six-site TC momentum-space Hubbard model is “compact,” meaning almost
the entire weight of the wave function is concentrated in the Hartree-Fock (HF) state. JVMC and Jproj denote the results of a VMC simulation and
the solution of the projective scheme, respectively. (c) Heuristic RY unitary operator U (θ) applied on the HF initial state |�0〉 of the two-site
Hubbard model. In purple are the single-qubit rotations and in blue are the CNOTs. The definitions of the single-qubit gates are given in
Appendix A. Exactly this Ansatz and initial state are employed in the hardware experiments on the ibmq_lima chip [see its layout in (a) where
numbers denote the qubits].

chosen as the starting state. It provides a good initial guess
and it can be efficiently obtained classically using methods
described in Ref. [75].

Due to the high gate number and large circuit depth the
qUCCSD Ansatz is too “costly” for current quantum hard-
ware limitations. Thus, for the QASM simulations and real
hardware experiments (HW), we will use a hardware-efficient
Ansatz [131] composed of single-qubit rotation gates around
the y-axis (RY gates) with controlled-NOT (CNOT) entangling
layers, optimized for the particular topology of the hardware.
The complete circuit is given in Fig. 1(c) and the definitions of
quantum gates in Appendix A. The detailed discussion about
our choices of Ansätzes is reported in Appendix D.

Particular care is needed for the evaluation of the matrix
elements Ai j [Eq. (13)] and Ci [Eq. (14)] required for the opti-
mization of the parameters θ according to Eq. (15). Quantum
circuits for the evaluation of the matrix elements containing
partial derivatives of the state wave function with respect to

the parameters are well known only for Hermitian operators.
A typical circuit W2(θ) for the calculation of the term

2Ci = 2 Re〈∂θi�|Ĥ |�〉 = 〈∂θi�|Ĥ |�〉 + 〈�|Ĥ†|∂θi�〉 (16)

is given in Fig. 2 with V = H , a Hadamard gate.
However, in the TC case, ĤTC is non-Hermitian and there-

fore such approach is not applicable. Recently, McArdle et al.
[78] proposed a method for the evaluation of the matrix ele-
ments Ai j and Ci. To compute Ci elements, they make use of
independent circuits W1(θ), which include control operations
associated to each term of the system Hamiltonian (see Fig. 3).
Unfortunately, the costs associated to the implementation of
the corresponding circuits in hardware calculations on current
noisy quantum processors are prohibitively large and there-
fore not applicable in practice.

In this work, we designed instead a different strategy based
on the decomposition of the non-Hermitian TC Hamiltonian
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FIG. 2. Quantum circuit W2(θ) used to calculate the 2Ci term
in the non-Hermitian case by separation of the TC Hamiltonian
into Hermitian and anti-Hermitian parts. We define that V = H
and V = Rx ( π

2 ) for the Hermitian and anti-Hermitian parts of a TC
Hamiltonian, respectively. This circuit should be repeated for every
term of the Hamiltonian. Note that no controlled Hamiltonian term
is present.

into its Hermitian and anti-Hermitian components. We first
define the two (Hermitian and anti-Hermitian) operators

Ĥ+
TC = ĤTC + Ĥ†

TC, (17)

Ĥ−
TC = ĤTC − Ĥ†

TC. (18)

We then compute the coefficients Ci as

Ci = 1

2

(〈
∂θi�

∣∣ĤTC|�〉 + 〈�|Ĥ†
TC

∣∣∂θi�
〉) = C+

i + C−
i

4
, (19)

where

C+
i = 〈

∂θi�
∣∣Ĥ+

TC|�〉 + 〈�|Ĥ+
TC

∣∣∂θi�
〉 = 2Re

〈
∂θi�

∣∣Ĥ+
TC|�〉

(20)

and

C−
i = 〈

∂θi�
∣∣Ĥ−

TC|�〉 − 〈�|Ĥ−
TC

∣∣∂θi�
〉 = 2 Re

〈
∂θi�

∣∣Ĥ−
TC|�〉.

(21)

Following this strategy, we can now implement the calcula-
tion of vector elements Ci using two circuits of the form W2(θ)
given in Fig. 2, one for the Hermitian (20) and one for the
anti-Hermitian (21) component of the transcorrelated operator
ĤTC. For detailed derivations, see Appendixes E and F. The
measurements of the Ai j matrix elements are performed in the
standard way (since they are independent of the Hamiltonian)
and can be found in Refs. [8,27].

FIG. 3. Quantum circuit W1(θ) used to calculate the 2Ci term
in the non-Hermitian case when, for simplicity, the Hamiltonian
is given by a single Pauli on the ith qubit, Ĥ = 1(0) ⊗ · · · ⊗
1(i−1)Z (i)1(i+1) ⊗ · · · ⊗ 1(Nq−1) (controlled-Z gate) where Nq denotes
the number of qubits. This circuit should be repeated and adapted
for every term of the Hamiltonian (controlled Pauli string) leading to
O(N6) different circuits to be measured in TC cases.

IV. RESULTS AND DISCUSSION

A. Simulations

In this section, we demonstrate the advantages of using
the transcorrelated versions of the Hubbard model both in the
real and momentum space. As first accessible test cases, we
considered the two-, four-, and six-site 1D Hubbard models.
It is important to mention that due to hardware and software
limitations, validation of quantum computing algorithms is
currently restricted to rather small system sizes. For this rea-
son, in this work we decided to restrict ourselves to the study
of the 1D Hubbard model, even though it is analytically solv-
able. Furthermore, accessible 2D systems like the 2 × 2 and
the 2 × 3 lattice models are anyway dominated by finite-size
effects and can be recast into a folded 1D chain.

For each system, we perform VarQITE simulations to
obtain a ground-state estimate |�〉 and quantify the perfor-
mance in terms of the absolute energy error, |�E | = |E −
Eexact|, and the infidelity, I = 1 − |〈�|�exact〉|2, with respect
to the targeted exact ground states at half-filling. We denote
the latter with |�r

exact〉 and |�m
exact〉 for the real- and the

momentum-space representations, respectively, and compute
them by exactly diagonalizing the corresponding Hamilto-
nian. Throughout the rest of this work, we assume that our
results correspond to SV-type simulations unless specified
otherwise and specify energies in units of the Hubbard param-
eter t . For each system, we initialize the VarQITE algorithm
at the mean-field solution of the noninteracting (U/t = 0)
non-TC Hubbard model (Fermi-sea/Hartree-Fock solution).
More specifically, the initial states of the calculations using
the TC Hamiltonians are taken to be the same as for the
non-TC cases and correspond to the U/t = 0 solutions of
the Hubbard Hamiltonians in the real space |�r

0〉 and the
momentum space |�m

0 〉. For hardware experiments, an inex-
pensive short-depth VQE calculation can be used for state
initialization [i.e., |�r/m

0 (θmin)〉 from minθ〈�(θ)|Ĥ r/m
U=0|�(θ)〉]

with a suitable Ansatz and initial state [see Fig. 1(c)]. To
assess the optimal time step ts for the VarQITE algorithm to
reach the required accuracy, we performed series of SV test
calculations, which led to a choice of �ts = 10−1 valid for
all investigated systems. Unlike VQE approaches, the global
phase of an Ansatz can potentially affect the end result in
variational Ansatz-based time evolution (VarQTE) algorithms
[27]. The reason is that the derivatives of variational param-
eters can differ when the global phase is omitted. Hence,
similarly to the work of McArdle et al. [78], we included
the parametrized global phase eiθ by adding a sequence of
single-qubit gates, as reported in Appendix D. Other technical
details are summarized in Sec. III.

In Fig. 4, we show the results of VarQITE simulations
in SV formulation of a two-, four-, and six-site repulsive
Hubbard models with periodic boundary conditions at inter-
mediate interaction strength U/t = 4.

After a first inspection, we can already advance the follow-
ing general main observations: First, the VarQITE algorithm
can be efficiently used to optimize the ground state of the
Hubbard model, both in its original Hermitian formulation,
as well as in the non-Hermitian TC form, in the real and
momentum space. Second, we observe a clear advantage of
the momentum-space representation of the Hubbard model
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FIG. 4. Results of VarQITE state-vector simulations of repulsive Hubbard models with (a) two, (b) four, and (c) six sites at half-filling
with t = 1 and U = 4, using the qUCCSD Ansatz with one layer. For every system, we report the evolution of the energy E (top), absolute
energy error |�E | = |E − Eexact| (middle), and infidelity 1 − F (bottom) where the fidelity F = |〈�|�exact〉|2 is computed with respect to
the exact ground state at half-filling |�exact〉 of the corresponding Hamiltonian. The dashed lines represent the exact ground-state energies
Eexact (−2.472, −2.103, −3.669, respectively) for the three systems. (For the six-site system, we only show every fifth data point for improved
readability.) In most cases, the TC momentum-space method presents orders of magnitude improvement both in energy error and infidelity.

in conjunction with the VarQITE algorithm (at least for this
critical intermediate interaction strength regime). Finally, the
transcorrelated formulation of both the real-space and, more
strikingly, momentum-space Hubbard model leads to a faster
and tighter convergence of the ground-state energies and cor-
responding state fidelities.

1. Advantages of the momentum representation

In all systems investigated (Fig. 4), we observe a fast re-
laxation from the initial state towards the optimized ground
states, with the exception of the real-space representations (in
blue), which remain stacked at higher energy values due to the
limitations of the wave-function Ansatz for this particular de-
scription of the problem. The reason for this behavior resides
in the fact that the momentum representation allows for a more
compact form of the wave function and therefore requires a
shallower quantum circuit to describe the ground-state wave
function. In fact, in the real space, the qUCCSD Ansatz is
not expressive enough to span the portion of the Hilbert space
that contains the ground-state wave function. This behavior is
confirmed by VQE simulations, which reproduce equivalent
results [see Fig. 5(a)].

The advantage of the momentum-space representation
in the low-to-intermediate interaction strength regime is

demonstrated by the fact that the final energy errors (middle
row in Fig. 4), both with and without the TC method, are lower
than the corresponding real-space results for all lattice sizes.
Except for the six-site case, where the infidelity of the TC
real-space result is lower than the non-TC momentum-space
result (lower right panel of Fig. 4), all the state infidelities
(bottom row) of the approximate ground state are lower in
the momentum-space than in the real-space formulation. This
exception shows that a larger infidelity of the ground state
does not directly correspond to a large error in energy, as the
momentum-space energy error in the six-site case is still lower
than the corresponding TC real-space result. Additionally, in
all momentum-space simulations, with and without applying
transcorrelation, the same qUCCSD Ansatz used in the real
space is capable of representing the ground state by improving
on the initial state.

2. Advantages of the transcorrelated formulation

As discussed in Sec. II, the use of the transcorrelated
transformation can further simplify the structure of the many-
electron wave function, making the mapping to a quantum
circuit more efficient. As a consequence, with the TC Hamil-
tonian, the optimization converges to the approximate ground
states with less resources (shallower circuits) than using the
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FIG. 5. Results of VarQITE state-vector simulations of repulsive Hubbard models with (a) two, (b) four, and (c) six sites at half-filling
with t = 1 and U = 4, using the qUCCSD Ansatz with n layers. For every system, we report the absolute energy error |�E | = |E − Eexact|
(top) and the infidelity 1 − F (bottom) at convergence, where the fidelity F = |〈�|�exact〉|2 is computed with respect to the exact ground
state at half-filling |�exact〉 of the corresponding Hamiltonian. The solid lines mark the converged outcomes of VQE state-vector simulations
(VQE/SV) for the real and momentum-space Hamiltonians. The benefits of the transcorrelated approach can be seen, for instance, in the result
of the six-site TC momentum-space Hamiltonian with n = 1, which is significantly more accurate than the plain momentum-space outcome
with n = 2, especially in terms of fidelity.

usual (non-TC) approach. Figures 4 and 5 summarize all re-
sults for the optimization of the Hubbard models with two,
four, and six sites. The optimization dynamics in Fig. 4
are given for a fixed depth (n = 1) qUCCSD wave-function
Ansatz, while Fig. 5 shows the converged values for the energy
deviations and state infidelities as a function of the circuit
depth (n = 1, 2), for the different Hamiltonian representa-
tions. In all cases, a maximum of two repetition layers was
sufficient to achieve a tight convergence (i.e., high fidelities)
at least for the TC cases.

The efficiency of the TC approach is a consequence of
the extremely “compact” form of the exact right eigenvector
(i.e., almost single reference) of the TC Hamiltonians, which
are dominated by the ground states with the interaction term
U = 0, |�r/m

0 〉, that were used as initial state in all VarQITE
calculations (TC and non-TC). This effect is most pronounced
for two sites [see Fig. 4(a)], where for the TC Hamiltonians
both in the real and momentum space, the starting states
|�r/m

0 〉 are already a reasonable approximation of the exact
ground state characterized by energy deviations |�E | < 10−3

and infidelities I < 10−5. Compared to the original real-space
results, the energy error for the TC real-space case is reduced
by three orders of magnitude from about 4 × 10−1 to 3 × 10−4

and, as in the purely real-space formulation, the value of the

energy or infidelity is not improved over the whole duration
of the VarQITE dynamics.

Also, for the four-site model [see Fig. 4(b)] the TC formu-
lation of the Hamiltonian in the momentum space is the best
method. The initial states |�r/m

0 〉 provide an improved starting
point upon non-TC methods (see initial energy values) and we
observe significant improvements of the energies and infideli-
ties due to VarQITE for all Hamiltonians. Most importantly,
the Hamiltonian in the TC momentum-space representation
offers approximately up to 4 and 7 orders of magnitude im-
provement in absolute energy error and infidelity, respectively,
in comparison to the TC real-space representation.

In Fig. 4(c), we show the results for the largest six-site
system we studied in this work, presenting a challenge for Var-
QITE. All simulations, except the TC momentum-space ones,
have significant residual energy errors |�E | > 10−1 when
using the standard qUCCSD Ansatz. The presence of kinks
at the beginning of the real-space simulation (blue circles) is
due to the errors in the inversion of the linear system [Eq. (12)]
and are suppressed by means of the Tikhonov regulariza-
tion at future time steps. The TC momentum-space approach
allows for at least 2 orders of magnitude improvement in en-
ergy error and infidelity with respect to all other approaches.
Due to the inclusion of correlation directly into the TC
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Hamiltonian, it is the only approach which allows to resolve
the exact ground state with a limited (in terms of expressibil-
ity) one-layer qUCCSD Ansatz. A similar behavior was found
in Dobrautz et al. [75], where it was shown that a momentum-
space TC Hubbard model can be accurately solved with
a limited restricted configuration interaction approach that
only includes up to quadruple excitation for an 18-site
system.

The results in Fig. 4 confirm that there exists a clear advan-
tage in the use the TC momentum-space formulation of the
Hubbard model, while the TC real-space approach presents
only minor improvements in comparison. The momentum-
space TC results suggest that a less expressive Ansatz, and
thus a shallower quantum circuit, is required to obtain accurate
results for the Hubbard model. For this reason, in Fig. 5 we
report, as anticipated above, the converged results of VarQITE
simulations when we double the number of layers in the
qUCCSD Ansatz by repeating it with independent variational
parameters (doubling the number of parameters, denoted as 2-
qUCCSD), and compare the results to the ones obtained with
a single qUCCSD layer. In addition, to validate our results and
highlight the potential advantage of the proposed TC approach
combined with the VarQITE algorithm, we also perform VQE
optimizations with the original real- and momentum-space
Hubbard Hamiltonians (since the standard VQE is applicable
only to Hermitian case).

As for the two-site system [Fig. 5(a)], inclusion of a second
layer in the qUCCSD Ansatz improves the circuit expressibil-
ity leading to a drastic improvement of the real-space results
(dark blue), where the energy error drops from 4 × 10−1 for
one layer to below 10−4 for two layers. Similarly, the energy
error of the TC real space (light blue) and the TC momentum
space (red) is reduced by more than 2 orders of magnitude
upon inclusion of a second qUCCSD layer and all approaches
achieve a staggeringly small infidelity of 10−14. The origi-
nal momentum-space results (orange) do not improve upon
adding an extra quantum circuit layer. However, this is con-
sistent with the benchmark VQE calculations (black lines in
Fig. 5) that we performed for the real- and momentum-space
Hubbard models.

The same trend is also confirmed for larger systems [see
Figs. 5(b) and 5(c)]. In fact, for all Hamiltonian representa-
tions with the exception of the TC momentum-space one, we
observe a reduction of absolute energy error (about 1–3 orders
of magnitude) and of the infidelities (about 2–4 orders of
magnitude) when a second layer is added to the wave-function
Ansatz. Note that the quality of the momentum-space TC
results (in red) with a single qUCCSD layer is significantly
better (|�E | � 10−3) than the one obtained with all other ap-
proaches, even when in these cases two layers of the qUCCSD
Ansatz are used. The same is true when we compared the con-
verged momentum-space TC values with the results obtained
with VQE using the real- and momentum-space (non-TC)
Hamiltonians (black lines). This is a very important result
in view of future applications of this approach in near-term
quantum computing.

To summarize, the inclusion of correlation directly into the
TC Hamiltonian via the similarity transformation based on
a Gutzwiller Ansatz allows us to obtain highly accurate re-
sults using the VarQITE algorithm with very shallow circuits

(one-layer qUCCSD), in particular when the momentum-
space representation of the Hubbard model is used.

B. Hardware calculations

Due to the limited number of available qubits, we only per-
formed hardware (HW) experiments for the two-site Hubbard
model. Consequently, based on the results of Fig. 5(a), we
opted for the study of the real-space Hubbard model since it
shows a noticeable effect on the accuracy (see blue and teal
bars) when the TC method is applied for a single UCCSD
Ansatz layer. On the other hand, the momentum-space results
for the two-site model show similar accuracy for both TC
and non-TC approaches. Before moving to HW experiments,
we performed QASM simulations (see Ref. [16] for some
examples) of the VarQITE algorithm, which include statistical
measurement noise as well as a noise model tuned for the
particular IBM quantum computer used in this paper, namely,
ibmq_lima [see Fig. 1(a)]. Details about the quantum device
and the noise model used are given in Appendix G.

As mentioned above, due to its large circuit depth the
qUCCSD Ansatz is not usable for current HW experiments,
due to limited coherence time and gate errors. Thus, in
both QASM and HW simulations, we used the hardware-
efficient heuristic RY ansatz [130,131] applied to the Fermi-
sea/Hartree-Fock initial state |�r

0〉. For more details on the
nature of the wave-function Ansatz, see Appendix D. Further-
more, these new calculations confirm that the proposed TC
approach is not restricted to a specific wave-function Ansatz.
(On the other hand, this is also the reason why the initial state
and the corresponding initial energies are different compared
to the ones seen in the SV simulations.) The quantum circuit
used for the HW calculations is given in Fig. 1(c).

Figure 6 shows the evolution of the total energies and
absolute energy errors for the QASM simulations (pink and
magenta) and the HW experiments (light and dark blue) as
a function of imaginary time. Both the ordinary and TC
VarQITE/QASM results are in qualitative agreement with SV
results reported in Fig. 4(a), even though, as expected, the
accuracy is reduced by the presence of a realistic noise model.
Surprisingly, the HW calculations converge faster than the
corresponding QASM noisy simulations, demonstrating that
noise is not necessarily deteriorating the results. In all cases,
the TC approaches converge faster than the corresponding
Hermitian cases. On the other hand, achieving a tight con-
vergence (with energy errors less than 10−2) in the presence
of noise is harder and, therefore, to limit the costs of the
calculations, we stopped all HW experiments when no further
significant improvement of the energy was noticed (hence the
different duration of the simulations). The qualitative good
match between the converged solutions of QASM and HW
experiments demonstrate that the TC approach is not only
compatible with a simpler wave-function Ansatz but also leads
to a noise resilient implementation of the VarQITE algorithm.

V. CONCLUSIONS AND OUTLOOK

In this paper, we demonstrated the advantages of using
the transcorrelated (TC) formulation of the Hubbard Hamilto-
nian both in real- and momentum-space representations. One
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FIG. 6. Results of VarQITE simulations of the repulsive two-site
Hubbard model at half-filling with U/t = 4. The RY heuristic Ansatz
(applied to the Hartree-Fock state), consisting of one layer with linear
entanglement, is used [see Fig. 1(c)]. We report the evolution of the
energy E (top) and absolute energy error |�E | = |E − Eexact| (bot-
tom) computed with respect to the exact ground state at half-filling
|�exact〉 of the corresponding Hamiltonian. The dashed line repre-
sents the exact ground-state energy Eexact = −2.472. HW denotes
the simulations performed on the ibmq_lima quantum computer.
QASM marks the classical noisy simulations with the noise model
of the ibmq_lima chip. (Only every second data point is shown to
improve the readability.)

of the strengths of our approach resides in the absence of
approximations in the derivation and the implementation of
the TC Hamiltonian together with the efficient classical opti-
mization of the Gutzwiller factor. The difficulties posed by the
non-Hermiticity of TC Hamiltonians are overcome by using
the variational quantum imaginary-time evolution (VarQITE)
algorithm. In particular, we performed state-vector VarQITE
simulations (without statistical and hardware noise) of two-
, four-, and six-site Hubbard models, showing that the TC
method in the momentum space offers up to 4 orders of mag-
nitude improvement of the absolute energy error for a fixed
Ansatz in comparison to the non-TC approaches.

To demonstrate the validity of our approach on a quantum
computer, we propose a hardware-efficient implementation
of the VarQITE algorithm in quantum circuits tailored to
non-Hermitian Hamiltonians. We showed that VarQITE in
the non-Hermitian case can be performed using the standard
approach, differentiation of general gates via a linear com-
bination of unitaries [124], by separating the Hamiltonian
into Hermitian and non-Hermitian parts. This is in contrast
with the suggestion of McArdle et al. [78] where different

quantum circuits for each term in the Hamiltonian (i.e., con-
trolled Hamiltonian terms) are required. Our implementation
is tested by performing realistic quantum circuit (QASM) sim-
ulations for two-site Hubbard model, including the statistical
error and noise sources modeled after the ibmq_lima quan-
tum computer. Moreover, we further confirm our methodology
by performing the same experiments on the actual ibmq_lima
chip. The converged results are in qualitative agreement with
QASM and SV simulations.

Concerning the scaling of the TC methods of this work,
the presence of three-body interactions in TC Hamiltonians
increases the number of required measurements on quantum
hardware from a O(N4) scaling for non-TC Hamiltonians to
a O(N6) scaling, with N being the total number of sites. This
poses a potential challenge for applying such TC methods in
near-term noisy quantum computers. However, Pauli group-
ing [132–135] and positive operator-valued measure [136]
methods could optimize the measurement process and further
reduce the number of measurements. More detailed investiga-
tions are required in order to better assess the validity of these
approaches, which will be addressed in future works.

In conclusion, despite the increased number of measure-
ments due to the presence of three-body terms, the TC
approaches studied in this work significantly improve the
accuracy of our calculations by making the ground state ex-
tremely “compact” and enable the use of shallower quantum
circuits as wave-function Ansätzes, compatible with near-
term noisy quantum computers. The established methodology
paves the way for applications to ab initio Hamiltonians
[71,72,137], bringing closer the first relevant demonstration
of quantum advantage in a relevant use case in the field of
quantum chemistry.
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APPENDIX A: QUANTUM GATES

The unitary matrix representation of the most general
single-qubit gate, which allows us to obtain any quantum state
on the Bloch sphere, can be written as

U (θ, φ, λ) =
(

cos
(

θ
2

) −eiλ sin
(

θ
2

)
eiφ sin

(
θ
2

)
ei(φ+λ) cos

(
θ
2

)
)

. (A1)

Frequently, the gates that perform the rotations around the x,
y, and z axes on the Bloch sphere are particularly useful in
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heuristic Ansätzes [see Fig. 1(c)] and are given by

Rx(θ ) = U

(
θ,−π

2
,
π

2

)
,

Ry(θ ) = U (θ, 0, 0),

Rz(λ) = e−iλ/2U (0, 0, λ). (A2)

The X gate allows us to construct the initial state |�0〉 =
|0101〉 in Fig. 1(c), and is given by U (π, 0, π ).

APPENDIX B: TIKHONOV REGULARIZATION

In this work, we combined the Tikhonov regularization
approach with the implementation of the VarQITE algorithm,
as suggested in Ref. [25]. The solution of the linear system
Aθ̇ = −C at each time step of VarQITE requires the inversion
of the matrix A [see Eq. (15)] which is prone to be ill con-
ditioned. In addition, problems can occur due to the presence
of hardware noise and statistical error originated from a finite
number of measurements in the computation of the Ai j matrix
elements [see Eq. (13)]. Instead, we use the aforementioned
regularization to update the parameters θ, which minimizes

‖C + Aθ̇‖2 + λ‖θ̇‖2. (B1)

The Tikhonov parameter λ ∈ R can be tuned to provide a
smoother evolution of the parameters θ (i.e., when λ is large)
in detriment of the accuracy (i.e., when λ is small). The op-
timal regularization parameter λopt can be efficiently found at
each time step by finding the “corner” of an L curve in certain
interval for λ [138]. For all simulations and experiments, we
use λ ∈ [10−3, 1] and the termination threshold of the L-curve
corner search set to 10−8. In our experience, those parameters
provided the best results.

APPENDIX C: OPTIMIZATION OF J

As mentioned in Sec. III, the optimization of the Gutzwiller
parameter J based on a projection method is similar to the
solution of a coupled-cluster amplitudes equation [139]. We
start from a general single determinant eigenvalue equation

ĤTC(J ) |�0〉 = E |�0〉 , (C1)

where the explicit dependence of ĤTC on the parameter J is
indicated and |�0〉 denotes the HF/Fermi-sea determinant. If
we project Eq. (C1) onto 〈�0|,

〈�0|ĤTC|�0〉 = E0(J ), (C2)

we obtain an expression of the TC “Hartree-Fock” energy,
which depends on the parameter J . Projecting Eq. (C1) onto
〈�0| ĝ(J ) yields

〈�0|ĝĤTC(J )|�0〉 = 〈�0|ĝE |�0〉
= E0(J )〈�0|ĝ|�0〉. (C3)

Then, combining Eqs. (C2) and (C3) yields

〈�0|(ĝ − 〈ĝ〉0)ĤTC(J )|�0〉 = 0, (C4)

TABLE I. Optimized Gutzwiller parameters obtained by projec-
tion, Jproj, and VMC optimization, JVMC, for the two-, four-, and
six-site Hubbard model at half-filling and U/t = 4. JVarQITE denotes
the Gutzwiller parameters that are used in our VarQITE simulations
and experiments.

Number of sites 2 4 6

Jproj −0.48 −0.88 −0.67
JVMC −0.47 −1.00 −0.76
JVarQITE −0.48 −0.73 −0.59

where 〈ĝ〉0 = 〈�0|ĝ|�0〉 and ĝ is expressed in the momentum
space

ĝ = J

N

∑
p,q,k,σ

c†
p−k,σ c†

q+k,σ̄ cq,σ̄ cp,σ . (C5)

Equation (C4) can be efficiently solved for J with a mean-field
level computational cost. To see the connection to coupled-
cluster theory: Eq. (C4) can also be interpreted as a projection
of the eigenvalue equation (ĤTC − E ) |�0〉 = 0 on the single
basis of the correlation factor ĝ; the parameter J can be inter-
preted as the sole and uniform amplitude of a coupled-cluster
Ansatz [Eq. (C5)]. The specific values obtained by solving
Eq. (C4), Jproj, and VMC optimized results, JVMC, for the lat-
tice sizes, fillings, and U/t values used in this study are listed
in Table I. As already studied in Ref. [75], too large values of J
can cause instabilities in the imaginary-time evolution due to
a resulting wide span in magnitude of the off-diagonal matrix
elements after the similarity transformation. For this reason
we chose slightly smaller values than Jproj would suggest (see
JVarQITE values in Table I). This still causes a more “compact”
right eigenvector, while having a positive influence on the
stability of the VarQITE algorithm.

APPENDIX D: QUCCSD AND HEURISTIC RY ANSÄTZES

The qUCCSD wave-function Ansatz [21]

|�(θ)〉 = Û (n)
ucc (θ)|�0〉 (D1)

has seen great success in providing accurate results when em-
bedded in variational quantum algorithms, such as VQE and
VarQITE, to prepare the ground state of molecular [130,140–
142] and condensed-matter Hamiltonians [143–145]. The cor-
responding cluster operator is given by a Trotterized version
of the UCCSD operator [146]

Û (n)
ucc (θ) =

∏
n

⎛
⎝∏

i j

exp
(
θn

i j (â
†
i â j − â†

j âi )
)

×
∏
i jkl

exp
(
θn

i jkl (â
†
i â†

j âk âl − â†
l â†

k â j âi )
)⎞⎠,

(D2)

where, for this work, we also consider n-independent layers
(referred to as n-qUCCSD) and all singles and doubles exci-
tations from the Fermi-sea/Hartree-Fock state. By mapping
the fermionic operators to qubits using the Jordan-Wigner
transformation, corresponding quantum circuits [130] can be
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derived with the number of parameters scaling as O(nN2
q N2

e )
and number of gates scaling as O(nN3

q N2
e ) where Ne and Nq

are, respectively, the numbers of electrons and qubits [140].
Despite a significant number of gates for current noisy quan-
tum processors, the attractive quality of the qUCCSD Ansatz
resides in the guarantee of a reasonable approximation to the
solution of quantum many-body problems.

To perform the experiments on quantum computers, we
also employ a variant of the heuristic hardware-efficient wave-
function Ansätzes, which were introduced in [131], that can be
written as

|�(θ)〉 = Û (n)
heu(θ)|�0〉 =

∏
n

(ÛentÛrot(θ))|�0〉, (D3)

where multiple layers are combined, consisting of alternating
blocks of arbitrary parametrized single-qubit rotations Ûrot (θ)
and entangling blocks Ûent composed of arbitrary arrange-
ment of two-qubit gates. Note that the vector θ includes the
parameters from all n layers. The selection of single-qubit
gates and entangling gates is typically performed to make
the quantum circuit shallow enough to fit in the limits of
the corresponding quantum computer. An example of such
Ansatz is given in Fig. 1(c), where we employ two rotation
layers Ûrot (θ) = ⊗Nq−1i=0 Ry(θi ) composed of Ry(θi ) rotations
on each ith qubit, separated by an entangling layer, Ûent =∏

i=0Nq−2 CNOT(i, i + 1), where the first parameter denotes
the control qubit and the second denotes the target qubit. The
initial state is a single reference state |0101〉 constructed by
applying U (π, 0, π ) = X , the Pauli-X gate (see Appendix A).

In general, for heuristic Ansätzes it is unclear what
number of layers n is required to achieve highly accurate
results. Progresses to alleviate this problem have been made
with additions to variational quantum frameworks of adap-
tive [147–149] and evolutionary methods [150,151] for the
ground-state preparation, to name only a few. Moreover,
Hamiltonian-inspired Ansätzes were shown to provide bene-
fits in comparison to the qUCCSD Ansatz for Hubbard models
in terms of reduced number of variational parameters but also
requiring the tuning of the number of layers as for heuristic
Ansätzes [78,129]. In the context of transcorrelated Hamilto-
nians, an Ansatz based on the repeated layers of a Trotterized
decomposition of the time-evolution operator exp[−iĤt] has
been used, where a variational parameter θ is associated to
every Hamiltonian term [78]. However, this Ansatz is inap-
propriate for current noisy quantum computers in comparison
to the qUCCSD Ansatz due to the worse scaling of the number
of variational parameters in O(N6) (i.e., the number of terms
in TC Hamiltonians, see Sec. II B). Therefore, in this work,
we focus on the most simple and validated approaches (e.g.,
the qUCCSD and hardware-efficient Ansätzes) that allow us
to showcase the benefits of exact TC methods. The specific
number of parameters of the different Ansätzes used in this
work are shown in Table II. In this work, we included the
parametrized global phase explicitly by means of the unitary

Uglobal(θ ) =
(

eiθ 0
0 eiθ

)
,

TABLE II. Numbers of variational parameters in the wave-
function Ansätzes used for different N-site Hubbard models. An
additional variational parameter is used to track the global phase in
VarQITE simulations.

Number of sites 2 4 6

qUCCSD 3 26 117
2-qUCCSD 6 52 234
RY 8

added to the first qubit at the end of every circuit Ansatz. The
Uglobal(θ ) gate can be decomposed as

Uglobal(θ ) = U1(θ )XU1(θ )X

=
(

1 0
0 eiθ

)(
0 1
1 0

)(
1 0
0 eiθ

)(
0 1
1 0

)

=
(

0 1
eiθ 0

)(
0 1

eiθ 0

)
=

(
eiθ 0
0 eiθ

)
,

where the gates X and U1 are native on the IBM Quantum
devices.

APPENDIX E: COMPUTATION OF C-VECTOR ELEMENTS

We first define the Hermitian Ĥ+
TC and the anti-Hermitian

Ĥ−
TC operators derived from the non-Hermitian TC Hamilto-

nian ĤTC ∈ {Ĥ r
tc, Ĥm

tc }:
Ĥ+

TC = ĤTC + Ĥ†
TC, (E1)

Ĥ−
TC = ĤTC − Ĥ†

TC, (E2)

with Ĥ+†
TC = Ĥ+

TC and Ĥ−†
TC = −Ĥ−

tc .
Then, we can write

〈∂θ�|Ĥ+
TC|�〉 + 〈�|Ĥ+†

TC |∂θ�〉
= 〈∂θ�|Ĥ+

TC|�〉 + (〈∂θ�|Ĥ+
TC|�〉)∗

= 2 Re〈∂θ�|Ĥ+
TC|�〉 (E3)

and

〈∂θ�|Ĥ−
TC|�〉 + 〈�|Ĥ−†

TC |∂θ�〉
= 〈∂θ�|Ĥ−

TC|�〉 + (〈∂θ�|Ĥ−
TC|�〉)∗

= 2 Re〈∂θ�|Ĥ−
TC|�〉. (E4)

Using the (anti-)Hermiticity, we obtain

〈∂θ�|Ĥ+
TC|φ〉 + 〈�|Ĥ+

TC|∂θ�〉 = 2 Re〈∂θ�|Ĥ+
TC|�〉, (E5)

〈∂θ�|Ĥ−
TC|�〉 − 〈�|Ĥ−

TC|∂θ�〉 = 2 Re〈∂θ�|Ĥ−
tc |�〉. (E6)

Combining Eqs. (E5) and (E6), one gets

〈∂θ�|Ĥ+
TC + Ĥ−

TC|�〉 + 〈�|Ĥ+
TC − Ĥ−

tc |∂θφ〉
= 2 Re〈∂θ�|Ĥ+

TC|�〉 + 2 Re〈∂θ�|Ĥ−
TC|�〉 (E7)
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which implies

〈∂θ�|2ĤTC|�〉 + 〈�|2Ĥ†
TC|∂θ�〉

= 2 Re〈∂θ�|Ĥ+
TC|�〉 + 2 Re〈∂θ�|Ĥ−

TC|�〉. (E8)

Inserting the definitions in Eqs. (17) and (18) and dividing by
2, we finally get

〈∂θ�|ĤTC|�〉 + 〈�|Ĥ†
TC|∂θ�〉

= Re〈∂θ�|Ĥ+
TC|�〉 + Re〈∂θ�|Ĥ−

TC|�〉, (E9)

which proves Eq. (19).

APPENDIX F: QUANTUM CIRCUIT FOR THE C-VECTOR
ELEMENTS

As mentioned in Sec. III, we derive the quantum circuits
that are proposed to measure the elements of the gradient
vector C in the VarQITE algorithm (see Fig. 2). In particular,
we explain how to construct the quantum circuits that are
compatible with the measurements of the (anti-)Hermitian
terms contained in (Ĥ−

TC) Ĥ+
TC. To this end, we follow closely

the derivations made for the Hermitian case in Ref. [124]
using the linear combination of unitaries approach. Consider
the case of the heuristic RY Ansatz as used in our QASM and
hardware experiments. To compute a derivative with respect
to some gate parameter θi of the RY Ansatz, we make use of
a single ancilla qubit. We show how the quantum circuit for
the anti-Hermitian case [see Fig. 2 with V = Rx( π

2 )] can be
derived. First, we write the initial state of our quantum register
as

|0〉a ⊗ |0〉. (F1)

By applying a Hadamard gate on the ancilla qubit, with its
unitary matrix

H = 1√
2

(
1 1
1 −1

)
, (F2)

we obtain the state

1√
2

(|0〉a + |1〉a) ⊗ |0〉. (F3)

We add a part of the Ansatz circuit that comes before the
differentiated gate, obtaining the state

1√
2

(|0〉a + |1〉a) ⊗ U (θ0:i−1)|0〉. (F4)

According to Schuld et al. [124], a derivative of the gate Ḡ
can be decomposed into a linear combination of unitary gates
Q1 and Q2 as

∂θi Ḡ = α

2
[(Q1 + Q†

1) + i(Q2 + Q†
2)], (F5)

with a parameter α ∈ R. For instance, for a gate Ry(θi ) of the
RY Ansatz, as in Fig. 2, ∂θi Ḡ = βRy(θi )CY with β = − 1

2 i. CY

is a controlled-Y gate where Y stands for the Pauli operator
σ̂y. This decomposition is performed automatically in QISKIT.
The state of the circuit then becomes

1√
2

[|0〉a ⊗ U (θ0:i−1)|0〉 + |1〉a ⊗ βYU (θ0:i−1)|0〉]. (F6)

Then, we add the Ry(θi ) and Ry(θi+1) gates to the circuit, as in
Fig. 2:

1√
2

[|0〉a ⊗ Ry(θi+1)Ry(θi)U (θ0:i−1)|0〉

+ |1〉a ⊗ Ry(θi+1)Ry(θi )βYU (θ0:i−1)|0〉]. (F7)

For compactness, we rewrite ∂θi G = βRy(θi )Y and U (θ0:i ) =
Ry(θi+1)Ry(θi)U (θ0:i−1) and obtain

1√
2

[|0〉a ⊗ U (θ0:i )|0〉 + |1〉a ⊗ Ry(θi+1)∂θi GU (θ0:i−1)|0〉].
(F8)

Next, we apply the Rx( π
2 ) gate, with its unitary matrix

Rx

(
π

2

)
= 1√

2

(
1 −i
−i 1

)
, (F9)

on the ancilla qubit, obtaining

1
2 [(|0〉a − i|1〉a) ⊗ U (θ0:i )|0〉

+ (−i|0〉a + |1〉a) ⊗ Ry(θi+1)∂θi GU (θ0:i−1)|0〉], (F10)

which can be written as

1
2 [|0〉a ⊗ [U (θ0:i ) − iRy(θi+1)∂θi GU (θ0:i−1)]|0〉

+ |1〉a ⊗ [−iU (θ0:i ) + Ry(θi+1)∂θi GU (θ0:i−1)]|0〉]. (F11)

Therefore, if the ancilla qubit is measured in the state |0〉a, we
obtain the state

|�0〉 = 1

2
√

p0
[U (θ0:i ) − iRy(θi+1)∂θi GU (θ0:i−1)]︸ ︷︷ ︸

R0

|0〉, (F12)

and if it is measured in the state |1〉a, we obtain the state

|�1〉 = 1

2
√

p1
[−iU (θ0:i ) + Ry(θi+1)∂θi+1 GU (θ0:i−1)]︸ ︷︷ ︸

R1

|0〉,

(F13)
where pi = 1

4 〈0|R†
i Ri|0〉 for i ∈ {0, 1}. To obtain the C−

i vector
elements [see Eq. (21)], we can combine such measurements
in the following way: If we measure our Hamiltonian and the
ancilla is in the state |0〉a, we get

〈�0|Ĥ−
TC|�0〉 = 1

4p0
[〈0|[U (θ0:i )

† (F14)

+ iU (θ0:i−1)†∂θ iG
†Ry(θi+1)†]Ĥ−

tc [U (θ0:i )

− iRy(θi+1)∂θi GU (θ0:i−1)]|0〉]
and if the ancilla is in the state |1〉a, we get

〈�1|Ĥ−
tc |�1〉 = 1

4p1
[〈0|[iU (θ0:i )

†

+ U (θ0:i−1)†∂θ iG
†Ry(θi+1)†]Ĥ−

tc [−iU (θ0:i )

+ Ry(θi+1)∂θ iGU (θ0:i−1)]|0〉]. (F15)

As we want to keep the term 〈0|[U (θ0:i−1)†∂θ i

G†Ry(θi+1)†]Ĥ−
tc U (θ0:i )|0〉 = 〈∂i�|Ĥ−

tc |�〉, we can subtract
Eq. (F14) from Eq. (F15), including also the probabilities, to
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TABLE III. Characteristics of the ibmq_lima quantum computer at the time of hardware and noisy QASM simulations. Data for the
calibration date of 21/11/2021 obtained at 11:00:00 GMT. The notation “0_1” denotes the CNOT gate between qubits 0 (control) and 1
(target).

Qubit T1 (μs) T2 (μs) Frequency (GHz) Readout error Pauli-X error CNOT error

Q0 119.3 164.63 5.03 5.60 × 10−2 3.693 × 10−4 0_1: 7.143 × 10−3

Q1 55.21 145.47 5.128 1.87 × 10−2 2.001 × 10−4 1_0: 7.143 × 10−3; 1_3: 1.478 × 10−2; 1_2: 5.417 × 10−3

Q2 109.17 122.27 5.247 2.21 × 10−2 2.520 × 10−4 2_1: 5.417 × 10−3

Q3 96.83 103 5.302 2.91 × 10−2 2.978 × 10−4 3_4: 1.528 × 10−2; 3_1: 1.478 × 10−2

Q4 25.19 19.48 5.092 5.01 × 10−2 6.759 × 10−4 4_3: 1.528 × 10−2

obtain

p0〈�0|Ĥ−
tc |�0〉 − p1〈�1|Ĥ−

tc |�1〉

= i

2
[−〈0|U (θ0:i )

†Ĥ−
tc Ry(θi+1)∂θ iGU (θ0:i−1)|0〉

+ 〈0|U (θ0:i−1)†∂θ iG
†Ry(θi+1)†Ĥ−

tc U (θ0:i )|0〉]. (F16)

Finally, multiplying by the factor −2i, we obtain C−
i :

− 2i[p0〈�0|Ĥ−
tc |�0〉 − p1〈�1|Ĥ−

tc |�1〉]
= 〈∂θi�|Ĥ−

tc |�〉 − 〈�|Ĥ−
tc |∂θi�〉 = C−

i . (F17)

For the Hermitian case, the computation of C+
i = 〈∂θ�|

Ĥ+
tc |�〉 + 〈�|Ĥ+

tc |∂θ�〉 is described in detail in Ref. [124],
Sec. III B.

APPENDIX G: HARDWARE CHARACTERISTICS
AND NOISE MODEL

In Table III, we provide the device characteristics at the
time of our hardware experiments, subsequently used for the
noise model in our QASM simulations. The necessary infor-
mation (T1, T2, qubit frequencies, readout errors, error rates
for single-qubit and two-qubit gates per qubit) is reported here
to enable the reconstruction of our noise model using QISKIT.
To build the noise model of the ibmq_lima quantum proces-
sor, the same procedure as in Ref. [16] is employed, which

is summarized below. The error sources considered in QASM
simulations (see Fig. 6) are the depolarization, thermalization,
and readout errors.

The depolarization error is represented as the decay of
the noiseless density matrix ρ = |�〉〈�| to the uncorrelated
density matrix 1/2Nq :

ρd = γ1Tr[ρ]1/2Nq + (1 − γ1)ρ, (G1)

with Nq being the number of qubits and γ1 representing the
decay rate. The latter is estimated using gate fidelities given
in Table III. The thermalization error of a qubit, which con-
sists of general amplitude dampening and phase-flip error, is
defined as the decay towards the Fermi-Dirac distribution of
ground and excited states based on their energy difference ω:

ρt = p|0〉〈0| + (1 − p)|1〉〈1|, (G2)

with p = (e
−ω
kbT + 1)−1, T being the temperature and kB the

Boltzmann constant.
The readout error is classically modeled by calibrating

the so-called measurement error matrix M. The M matrix
assigns to any Nq-qubit computational basis state |i〉 (i.e., the
correct state that should be obtained) a probability to read
out all the states | j〉 (i.e., the states that are actually obtained
due to noise), or concisely P (i| j) where i, j are Nq-qubit bit
strings. In an ideal noiseless situation, this matrix M would
be characterized by its matrix elements P (i| j) = 1 for i = j
and P (i| j) = 0 for i �= j.
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