60 research outputs found

    Altered mitochondrial function and energy metabolism is associated with a radioresistant phenotype in oesophageal adenocarcinoma

    Get PDF
    Neoadjuvant chemoradiation therapy (CRT) is increasingly the standard of care for locally advanced oesophageal cancer. A complete pathological response to CRT is associated with a favourable outcome. Radiation therapy is important for local tumour control, however, radioresistance remains a substantial clinical problem. We hypothesise that alterations in mitochondrial function and energy metabolism are involved in the radioresistance of oesophageal adenocarcinoma (OAC). To investigate this, we used an established isogenic cell line model of radioresistant OAC. Radioresistant cells (OE33 R) demonstrated significantly increased levels of random mitochondrial mutations, which were coupled with alterations in mitochondrial function, size, morphology and gene expression, supporting a role for mitochondrial dysfunction in the radioresistance of this model. OE33 R cells also demonstrated altered bioenergetics, demonstrating significantly increased intracellular ATP levels, which was attributed to enhanced mitochondrial respiration. Radioresistant cells also demonstrated metabolic plasticity, efficiently switching between the glycolysis and oxidative phosphorylation energy metabolism pathways, which were accompanied by enhanced clonogenic survival. This data was supported in vivo, in pre-treatment OAC tumour tissue. Tumour ATP5B expression, a marker of oxidative phosphorylation, was significantly increased in patients who subsequently had a poor pathological response to neoadjuvant CRT. This suggests for the first time, a role for specific mitochondrial alterations and metabolic remodelling in the radioresistance of OAC

    Bioactive Indanes: Insight Into the Bioactivity of Iindane Dimers Related to the Lead Anti‐inflammatory Molecule PH46A

    Get PDF
    Objectives PH46A (1) demonstrates significant anti-inflammatory activity in phenotypic models but its mechanism and site of action have been elusive. Current study focused on the bioactivity of PH46 (2) and related novel indane dimers (6-10) to investigate the impact of changes in substitution and stereochemistry at the C-1 and C-2 positions of the PH46 (2) scaffold. Methods Cytotoxicity profiles of compounds were established using THP-1 macrophages and SW480 cells. Effects of the compounds were then evaluated at 10 μM using 5-lipoxygenase (LOX) and 15-LOX enzymes, and 5-LOX binding was evaluated in silico against NDGA, nitric oxide (NO) released from LPS-induced SW480 cells and cytokines in THP-1 macrophages (IL-6, IL-1b, TNF-a and IFN-c) and in SW480 cells (IL-8). Key findings PH46 (2) and 7 cause reduction in NO, inhibition of 5-LOX with high binding energy and no cytotoxicity effects in THP-1 macrophages and SW480 cell lines (up to 50 μM). The cytokine profiling of the series demonstrated inhibition of IL-6 and TNF-a in THP-1 macrophages together with IL-8 in SW480 cells. Conclusions The observed profile of cytokine modulation (IL-6/ TNF-a, IL-8) and inhibition of release of NO and 5-LOX may contribute to the in vivo effects demonstrated by indane dimers and PH46A (1) in murine models of colitis

    Telehealth Delivery of a Multi-Disciplinary Rehabilitation Programme for Upper Gastro-Intestinal Cancer: ReStOre@Home Feasibility Study

    Get PDF
    Advances in diagnosis and the treatment for upper gastro-intestinal (UGI) cancers have led to improved survival rates and, consequently, to a larger population of survivors of many types of UGI cancer [1,2]. Progress in survivorship care for UGI cancer remains poor, and many survivors experience ongoing negative physical and psychosocial impacts of treatment, which can have profound and long-term impacts on physical function and quality of life (QOL) [3,4]. At one year post-op, 40% of survivors report poor physical function, and significant reductions in walking distance, cardiorespiratory fitness and muscle strength are observed, along with a high prevalence of fatigue (41%), sarcopenia (35%) and dyspnoea (20%) [5–7]. Nutritional compromise in UGI cancer survivors is frequently reported, with eating restrictions are observed in 49% at 1 year post-surgery and malabsorption in 73% at two years post-op [6,8]. This can lead to significant reductions in fat-free body mass and skeletal muscle [8]. From a psychosocial perspective, anxiety (36%), fear of recurrence (29%) and high rates of sleep difficulties (51%) are reported. An integrated, multi-disciplinary specialist rehabilitation approach focusing on patient-centred outcomes is indicated to address the substantial, complex, multi-dimensional rehabilitation needs of UGI cancer survivors and to enable them to achieve the best possible quality of life and to reintegrate into family, social and working life [9–12]

    Visceral Adipose Tissue Modulates Radiosensitivity in Oesophageal Adenocarcinoma

    Get PDF
    Oesophageal adenocarcinoma (OAC) is an exemplar model of obesity-associated cancer. Response to neoadjuvant chemoradiotherapy (NA CRT) is a clinical challenge. We examined if visceral adipose tissue and obesity status alter radiosensitivity in OAC. The radioresistant (OE33R) and radioresponsive (OE33P) OAC isogenic model was cultured with adipose tissue conditioned media from three patient cohorts: non-cancer patients, surgery only OAC patients and NA CRT OAC patients. Cell survival was characterised by clonogenic assay, metabolomic profiling by nuclear magnetic resonance spectroscopy and adipokine receptor gene expression by qPCR. A retrospective in vivo study compared tumour response to NA CRT in normal weight (n=53) versus overweight/obese patients (n=148). Adipose conditioned media (ACM) from all patient cohorts significantly increased radiosensitivity in radioresistant OE33R cells. ACM from the NA CRT OAC cohort increased radiosensitivity in OE33P cells. Metabolomic profiling demonstrated separation of the non-cancer and surgery only OAC cohorts and between the non-cancer and NA CRT OAC cohorts. Gene expression profiling of OE33P versus OE33R cells demonstrated differential expression of the adiponectin receptor-1 (AR1), adiponectin receptor-2 (AR2), leptin receptor (LepR) and neuropilin receptor-1 (NRP1) genes. In vivo overweight/obese OAC patients achieved an enhanced tumour response following NA CRT compared to normal weight patients. This study demonstrates that visceral adipose tissue modulates the cellular response to radiation in OA

    1,4-dihydroxy quininib attenuates growth of colorectal cancer cells and xenografts and regulates the TIE-2 signaling pathway in patient tumours

    Get PDF
    Colorectal cancer (CRC) is the second leading cause of cancer associated deaths in developed countries. Cancer progression and metastatic spread is reliant on new blood vasculature, or angiogenesis. Tumour-related angiogenesis is regulated by proand anti-angiogenic factors secreted from malignant tissue in a stepwise process. Previously we structurally modified the small anti-angiogenic molecule quininib and discovered a more potent anti-angiogenic compound 1, 4 dihydroxy quininib (Q8), an antagonist of cysteinyl leukotriene receptor-1 with VEGF-independent bioactivity. Here, Q8, quininib (Q1) and five structural analogues were assayed for anti-tumorigenic effects in pre-clinical cancer models. Q8 reduced clone formation of the human colorectal cancer cell line HT29-Luc2. Gene silencing of CysLT1 in HT29-Luc2 cells significantly reduced expression of calpain-2. In human ex vivo colorectal cancer tumour explants, Q8 significantly decreased the secretion of both TIE-2 and VCAM-1 expression. In vivo Q8 was well tolerated up to 50 mg/kg by Balb/C mice and significantly more effective at reducing tumour volume in colorectal tumour xenografts compared to the parent drug quininib. In tumour xenografts, Q8 significantly reduced expression of the angiogenic marker calpain-2. In summary, we propose Q8 may act on the TIE-2-Angiopoietin signalling pathway to significantly inhibit the process of tumour angiogenesis in colorectal cancer

    1,4-dihydroxy quininib modulates the secretome of uveal melanoma tumour explants and a marker of oxidative phosphorylation in a metastatic xenograft model

    Full text link
    Uveal melanoma (UM) is an intraocular cancer with propensity for liver metastases. The median overall survival (OS) for metastatic UM (MUM) is 1.07 years, with a reported range of 0.84-1.34. In primary UM, high cysteinyl leukotriene receptor 1 (CysLT(1)) expression associates with poor outcomes. CysLT(1) antagonists, quininib and 1,4-dihydroxy quininib, alter cancer hallmarks of primary and metastatic UM cell lines in vitro. Here, the clinical relevance of CysLT receptors and therapeutic potential of quininib analogs is elaborated in UM using preclinical in vivo orthotopic xenograft models and ex vivo patient samples. Immunohistochemical staining of an independent cohort (n = 64) of primary UM patients confirmed high CysLT(1) expression significantly associates with death from metastatic disease (p = 0.02; HR 2.28; 95% CI 1.08-4.78), solidifying the disease relevance of CysLT(1) in UM. In primary UM samples (n = 11) cultured as ex vivo explants, 1,4-dihydroxy quininib significantly alters the secretion of IL-13, IL-2, and TNF-alpha. In an orthotopic, cell line-derived xenograft model of MUM, 1,4-dihydroxy quininib administered intraperitoneally at 25 mg/kg significantly decreases ATP5B expression (p = 0.03), a marker of oxidative phosphorylation. In UM, high ATP5F1B is a poor prognostic indicator, whereas low ATP5F1B, in combination with disomy 3, correlates with an absence of metastatic disease in the TCGA-UM dataset. These preclinical data highlight the diagnostic potential of CysLT(1) and ATP5F1B in UM, and the therapeutic potential of 1,4-dihydroxy quininib with ATP5F1B as a companion diagnostic to treat MUM

    Characterisation of an Isogenic Model of Cisplatin Resistance in Oesophageal Adenocarcinoma Cells

    Get PDF
    Cisplatin (cis-diamminedichloroplatinum) is widely used for the treatment of solid malignancies" however, the development of chemoresistance hinders the success of this chemotherapeutic in the clinic. This study provides novel insights into the molecular and phenotypic changes in an isogenic oesophageal adenocarcinoma (OAC) model of acquired cisplatin resistance. Key differences that could be targeted to overcome cisplatin resistance are highlighted. We characterise the differences in treatment sensitivity, gene expression, inflammatory protein secretions, and metabolic rate in an isogenic cell culture model of acquired cisplatin resistance in OAC. Cisplatin-resistant cells (OE33 Cis R) were significantly more sensitive to other cytotoxic modalities, such as 2 Gy radiation (p = 0.0055) and 5-fluorouracil (5-FU) (p = 0.0032) treatment than parental cisplatin-sensitive cells (OE33 Cis P). Gene expression profiling identified differences at the gene level between cisplatin-sensitive and cisplatin-resistant cells, uncovering 692 genes that were significantly altered between OE33 Cis R cells and OE33 Cis P cells. OAC is an inflammatory-driven cancer, and inflammatory secretome profiling identified 18 proteins secreted at significantly altered levels in OE33 Cis R cells compared to OE33 Cis P cells. IL-7 was the only cytokine to be secreted at a significantly higher levels from OE33 Cis R cells compared to OE33 Cis P cells. Additionally, we profiled the metabolic phenotype of OE33 Cis P and OE33 Cis R cells under normoxic and hypoxic conditions. The oxygen consumption rate, as a measure of oxidative phosphorylation, is significantly higher in OE33 Cis R cells under normoxic conditions. In contrast, under hypoxic conditions of 0.5% O2, the oxygen consumption rate is significantly lower in OE33 Cis R cells than OE33 Cis P cells. This study provides novel insights into the molecular and phenotypic changes in an isogenic OAC model of acquired cisplatin resistance, and highlights therapeutic targets to overcome cisplatin resistance in OAC

    Colonic oncostatin M expression evaluated by immunohistochemistry and infliximab therapy outcome in corticosteroid-refractory acute severe ulcerative colitis

    Get PDF
    Ulcerative colitis (UC) is a chronic relapsing remitting inflammatory disease of the colon. The lifetime risk of presentation with acute severe ulcerative colitis (ASUC) is 15%.1 Patients with ASUC receive first line therapy with intravenous corticosteroids, however, approximately 30% have corticosteroid-refractory disease.2,3 In this situation, rescue medical therapy options include the anti-tumor necrosis factor (TNF) monoclonal antibody infliximab (IFX) or the calcineurin inhibitor ciclosporin.2 A significant proportion of patients fail to respond to IFX therapy with reported colectomy rates at 1 year of 35%.4 Biomarkers which identify patients with corticosteroid-refractory ASUC, with a reduced likelihood of IFX response, would significantly advance clinical care for these patients

    Metformin is a metabolic modulator and radiosensitiser in rectal cancer

    Get PDF
    Resistance to neoadjuvant chemoradiation therapy, is a major challenge in the management of rectal cancer. Increasing evidence supports a role for altered energy metabolism in the resistance of tumours to anti-cancer therapy, suggesting that targeting tumour metabolism may have potential as a novel therapeutic strategy to boost treatment response. In this study, the impact of metformin on the radiosensitivity of colorectal cancer cells, and the potential mechanisms of action of metformin-mediated radiosensitisation were investigated. Metformin treatment was demonstrated to significantly radiosensitise both radiosensitive and radioresistant colorectal cancer cells in vitro. Transcriptomic and functional analysis demonstrated metformin-mediated alterations to energy metabolism, mitochondrial function, cell cycle distribution and progression, cell death and antioxidant levels in colorectal cancer cells. Using ex vivo models, metformin treatment significantly inhibited oxidative phosphorylation and glycolysis in treatment naïve rectal cancer biopsies, without affecting the real-time metabolic profile of non-cancer rectal tissue. Importantly, metformin treatment differentially altered the protein secretome of rectal cancer tissue when compared to non-cancer rectal tissue. Together these data highlight the potential utility of metformin as an anti-metabolic radiosensitiser in rectal cancer
    corecore