4,396 research outputs found

    Reconsidering laminate nonsymmetry

    Get PDF
    Nonsymmetric laminates are commonly precluded from composite design due to perceptions of reduced performance arising from in- and out-of-plane coupling. This coupling introduces warpage during cure—leading to raised stresses, together with diminished buckling and load carrying capacity. However, these reduced performance characteristics are rarely quantified and included in the design process; instead the symmetric-only paradigm remains pervasive at the cost of a significantly reduced design space. Warpage is largely driven by mismatch in the coefficients of thermal expansion between sublaminates located above and below the midplane and can be predicted by the classical laminate theory. Acknowledging that all symmetric laminates in multipart structures have build stresses from assembly, it is proposed that subsets of nonsymmetric laminates that translate to similar raised stress levels be considered for design. Challenging this symmetric-only design paradigm would permit greater design freedom and offer new routes to elastically tailor composite structures. Further analysis of structural performance is assessed in terms of reduced loading and buckling capacity

    Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players

    Full text link
    We present the concept of fiber-flux density for locally quantifying white matter (WM) fiber bundles. By combining scalar diffusivity measures (e.g., fractional anisotropy) with fiber-flux measurements, we define new local descriptors called Fiber-Flux Diffusion Density (FFDD) vectors. Applying each descriptor throughout fiber bundles allows along-tract coupling of a specific diffusion measure with geometrical properties, such as fiber orientation and coherence. A key step in the proposed framework is the construction of an FFDD dissimilarity measure for sub-voxel alignment of fiber bundles, based on the fast marching method (FMM). The obtained aligned WM tract-profiles enable meaningful inter-subject comparisons and group-wise statistical analysis. We demonstrate our method using two different datasets of contact sports players. Along-tract pairwise comparison as well as group-wise analysis, with respect to non-player healthy controls, reveal significant and spatially-consistent FFDD anomalies. Comparing our method with along-tract FA analysis shows improved sensitivity to subtle structural anomalies in football players over standard FA measurements

    Charm and Bottom Semileptonic Decays

    Get PDF
    We review the present status of theoretical attempts to calculate the semileptonic charm and bottom decays and then present a calculation of these decays in the light--front frame at the kinematic point q2=0q^2=0. This allows us to evaluate the form factors at the same value of q2q^2, even though the allowed kinematic ranges for charm and bottom decays are very different. Also, at this kinematic point the decay is given in terms of only one form factor A0(0)A_{0}(0). For the ratio of the decay rates given by the E653 collaboration we show that the determination of the ratio of the Cabibbo--Kobayashi--Maskawa (CKM) matrix elements is consistent with that obtained from the unitarity constraint. At present, though, the unitarity method still has greater accuracy. Since comparisons of the semileptonic decays into ρ\rho and either electrons or muons will be available soon from the E791 Fermilab experiment, we also look at the massive muon case. We show that for a range of q2q^2 the SU(3)FSU(3)_F symmetry breaking is small even though the contributions of the various helicity amplitudes becomes more complicated. For BB decays, the decay BKˉB \rightarrow K^{*} \ell \bar{\ell} at q2=0q^2=0 involves an extra form factor coming from the photon contribution and so is not amenable to the same kind of analysis, leaving only the decay BKννˉB \rightarrow K^{*}\nu \bar{\nu} as a possibility. As the mass of the decaying particle increases we note that the SU(3)SU(3) symmetry becomes badly broken at q2=0q^2=0.Comment: Latex, 19 pages, two figures are attached, a minor change in the manuscript related to thi

    Distributed Drug Discovery, Part 2: Global Rehearsal of Alkylating Agents for the Synthesis of Resin-Bound Unnatural Amino Acids and Virtual D3 Catalog Construction

    Get PDF

    Segmentation of Non-viable Myocardium in Delayed Enhancement Magnetic Resonance Images

    Get PDF
    Purpose: To evaluate six algorithms for segmenting non-viable left ventricular (LV) myocardium in delayed enhancement (DE) magnetic resonance imaging (MRI). Methods: Twenty-three patients with known chronic ischemic heart disease underwent DE-MRI. DE images were first manually thresholded using an interactive region-filling tool to isolate non-viable myocardium. Then, six thresholding algorithms, based on the image intensity characteristics of either LV blood pool (BP), viable LV myocardium, or both, were applied to each image. For the Mean−2SDBP algorithm, thresholds were equal to the mean BP intensity minus twice its standard deviation. For the Mean+2SDSemi, Mean+3SDSemi, Mean+2SDAuto, and Mean+3SDAuto algorithms, thresholds equaled the mean intensity of viable myocardium plus twice (or thrice, as denoted by the name) the standard deviation of intensity (subscripts denote how these values were determined: automatic or semi-automatic). For the Minimum Intensity algorithm, the threshold equaled the minimum intensity between the BP and LV myocardium mean intensities. Percent Scar was defined as the ratio of non-viable to total myocardial pixels in each image. Agreement between each algorithm and manual thresholding was assessed using Bland–Altman analysis. Results: Mean Percent Scar was 25 ± 16% by manual thresholding. Five of the six algorithms demonstrated mean bias within ±3% (all except Mean+2SDAuto); however, limits of agreement (LoA) were large in general (range 12–36%). The best overall agreement was demonstrated by the Mean+2SDSemi (bias, 0%; LoA, 12%) and Mean+3SDSemi(bias, −3%; LoA, 14%) algorithms. Conclusion: On average, five of the six algorithms proved satisfactory for clinical implementation; however, in some images, manual correction of automatic results was necessary

    A consistent treatment for pion form factors in space-like and time-like regions

    Get PDF
    We write down some relevant matrix elements for the scattering and decay processes of the pion by considering a quark-meson vertex function. The pion charge and transition form factors FπF_\pi, FπγF_{\pi\gamma}, and FπγF_{\pi\gamma^*} are extracted from these matrix elements using a relativistic quark model on the light-front. We found that, the form factors FπF_\pi and FπγF_{\pi\gamma} in the space-like region agree well with experiment. Furthermore, the branching ratios of all observed decay modes of the neutral pion, that are related to the form factors FπγF_{\pi\gamma} and FπγF_{\pi\gamma^*} in the time-like region, are all consistent with the data as well. Additionally, FπF_\pi in the time-like region, which deals with the nonvalence contribution, is also discussed.Comment: 24 pages, 6 figures, to appear in Phys. Rev.

    B -> K^* gamma from D -> K^* l nu

    Full text link
    The B -> K^* gamma branching fraction is predicted using heavy quark spin symmetry at large recoil to relate the tensor and (axial-)vector form factors, using heavy quark flavor symmetry to relate the B decay form factors to the measured D -> K^* l nu form form factors, and extrapolating the semileptonic B decay form factors to large recoil assuming nearest pole dominance. This prediction agrees with data surprisingly well, and we comment on its implications for the extraction of |Vub| from B -> rho l nu.Comment: 10 page

    Optical energies of AllnN epilayers

    Get PDF
    Optical energy gaps are measured for high-quality Al1−xInxN-on-GaN epilayers with a range of compositions around the lattice match point using photoluminescence and photoluminescence excitation spectroscopy. These data are combined with structural data to determine the compositional dependence of emission and absorption energies. The trend indicates a very large bowing parameter of 6 eV and differences with earlier reports are discussed. Very large Stokes' shifts of 0.4-0.8 eV are observed in the composition range 0.13<x<0.24, increasing approximately linearly with InN fraction despite the change of sign of the piezoelectric fiel
    corecore