2,546 research outputs found

    On the Discovery of Monocular Rivalry by Tscherning in 1898:Translation and Review

    Get PDF
    Monocular rivalry was named by Breese in 1899. He made prolonged observation of superimposed orthogonal gratings; they fluctuated in clarity with either one or the other grating occasionally being visible alone. A year earlier, Tscherning observed similar fluctuations with a grid of vertical and horizontal lines and with other stimuli; we draw attention to his prior account. Monocular rivalry has since been shown to occur with a wide variety of superimposed patterns with several independent rediscoveries of it. We also argue that Helmholtz described some phenomenon other than monocular rivalry in 1867

    Intramolecular vibronic dynamics in molecular solids: C60

    Get PDF
    Vibronic coupling in solid C60 has been investigated with a combination of resonant photoemission spectroscopy (RPES) and resonant inelastic x-ray scattering (RIXS). Excitation as a function of energy within the lowest unoccupied molecular orbital resonance yielded strong oscillations in intensity and dispersion in RPES, and a strong inelastic component in RIXS. Reconciling these two observations establishes that vibronic coupling in this core hole excitation leads to predominantly inelastic scattering and localization of the excited vibrations on the molecule on a femtosecond time scale. The coupling extends throughout the widths of the frontier valence bands.

    Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1

    Get PDF
    Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases

    Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point

    Get PDF
    The propagation of linear Alfvén wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfvén wavefront remains planar, despite the varying equilibrium Alfvén speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfvénic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfvén wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfvén wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Observation and Modeling of the Solar Transition Region: II. Solutions of the Quasi-Static Loop Model

    Get PDF
    In the present work we undertake a study of the quasi-static loop model and the observational consequences of the various solutions found. We obtain the most general solutions consistent with certain initial conditions. Great care is exercised in choosing these conditions to be physically plausible (motivated by observations). We show that the assumptions of previous quasi-static loop models, such as the models of Rosner, Tucker and Vaiana (1978) and Veseckey, Antiochos and Underwood (1979), are not necessarily valid for small loops at transition region temperatures. We find three general classes of solutions for the quasi-static loop model, which we denote, radiation dominated loops, conduction dominated loops and classical loops. These solutions are then compared with observations. Departures from the classical scaling law of RTV are found for the solutions obtained. It is shown that loops of the type that we model here can make a significant contribution to lower transition region emission via thermal conduction from the upper transition region.Comment: 30 pages, 3 figures, Submitted to ApJ, Microsoft Word File 6.0/9

    Radiation Hydrodynamical Instabilities in Cosmological and Galactic Ionization Fronts

    Full text link
    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25 - 500 solar masses, with H II regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.Comment: 6 pages, 4 figures, accepted for proceedings of HEDLA2010, Caltech, March 15 - 18, 201

    Multi-component measurements of the Jefferson Lab energy recovery linac electron beam using optical transition and diffraction radiation

    Full text link
    High brightness electron accelerators, such as energy recovery linacs (ERL), often have complex particle distributions that can create difficulties in beam transport as well as matching to devices such as wigglers used to generate radiation from the beam. Optical transition radiation (OTR), OTR interferometry (OTRI) and optical diffraction-transition radiation interferometry (ODTRI) have proven to be effective tools for diagnosing both the spatial and angular distributions of charged particle beams. OTRI and ODTRI have been used to measure rms divergences and optical transverse phase space mapping has been demonstrated using OTRI. In this work we present the results of diagnostic experiments using OTR and ODR conducted at the Jefferson Laboratory 115 MeV ERL which show the presence of two separate components within the spatial and angular distributions of the beam. By assuming a correlation between the spatial and angular features we estimate an rms emittance value for each of the two components.Comment: 25 pages, 10 figures; accepted for publication in PRSTAB; minor formatting errors correcte

    Searching for the earliest galaxies in the 21 cm forest

    Get PDF
    We use a model developed by Xu et al. (2010) to compute the 21 cm line absorption signatures imprinted by star-forming dwarf galaxies (DGs) and starless minihalos (MHs). The method, based on a statistical comparison of the equivalent width (W_\nu) distribution and flux correlation function, allows us to derive a simple selection criteria for candidate DGs at very high (z >= 8) redshift. We find that ~ 18% of the total number of DGs along a line of sight to a target radio source (GRB or quasar) can be identified by the condition W_\nu < 0; these objects correspond to the high-mass tail of the DG distribution at high redshift, and are embedded in large HII regions. The criterion W_\nu > 0.37 kHz instead selects ~ 11% of MHs. Selected candidate DGs could later be re-observed in the near-IR by the JWST with high efficiency, thus providing a direct probe of the most likely reionization sources.Comment: 8 pages, 3 figures. Accepted for publication in Science in China Series
    • …
    corecore