17 research outputs found

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to �0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817

    No full text
    The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between Mej = 10 -³ - 10-² M⊙ for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if 10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way
    corecore