749 research outputs found

    Constraining population synthesis models via the binary neutron star population

    Full text link
    The observed sample of double neutron-star (NS-NS) binaries presents a challenge to population-synthesis models of compact object formation: the parameters entering into these models must be carefully chosen so as to match (i) the observed star formation rate and (ii) the formation rate of NS-NS binaries, which can be estimated from the observed sample and the selection effects related to the discoveries with radio-pulsar surveys. In this paper, we select from an extremely broad family of possible population synthesis models those few (2%) which are consistent with the observed sample of NS-NS binaries. To further sharpen the constraints the observed NS-NS population places upon our understanding of compact-object formation processes, we separate the observed NS-NS population into two channels: (i) merging NS-NS binaries, which will inspiral and merge through the action of gravitational waves within 1010 Gyr, and (ii) wide NS-NS binaries, consisting of all the rest. With the subset of astrophysically consistent models, we explore the implications for the rates at which double black hole (BH-BH), black hole-neutron star (BH-NS), and NS-NS binaries will merge through the emission of gravitational waves.Comment: (v1) Submitted to ApJ. Uses emulateapj.cls. 8 pages, 7 figures. (v2) Minor textual changes in response to referee queries. Substantial additions in appendicies, including a detailed discussion of sample multidimensional population synthesis fit

    Irreversibility and Polymer Adsorption

    Full text link
    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the non-equilibrium layers which result. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let

    Transition from inspiral to plunge for eccentric equatorial Kerr orbits

    Get PDF
    Ori and Thorne have discussed the duration and observability (with LISA) of the transition from circular, equatorial inspiral to plunge for stellar-mass objects into supermassive (105108M10^{5}-10^{8}M_{\odot}) Kerr black holes. We extend their computation to eccentric Kerr equatorial orbits. Even with orbital parameters near-exactly determined, we find that there is no universal length for the transition; rather, the length of the transition depends sensitively -- essentially randomly -- on initial conditions. Still, Ori and Thorne's zero-eccentricity results are essentially an upper bound on the length of eccentric transitions involving similar bodies (e.g., aa fixed). Hence the implications for observations are no better: if the massive body is M=106MM=10^{6}M_{\odot}, the captured body has mass mm, and the process occurs at distance dd from LISA, then S/N(m/10M)(1Gpc/d)×O(1)S/N \lesssim (m/10 M_{\odot})(1\text{Gpc}/d)\times O(1), with the precise constant depending on the black hole spin. For low-mass bodies (m7Mm \lesssim 7 M_\odot) for which the event rate is at least vaguely understood, we expect little chance (probably [much] less than 10%, depending strongly on the astrophysical assumptions) of LISA detecting a transition event with S/N>5S/N>5 during its run; however, even a small infusion of higher-mass bodies or a slight improvement in LISA's noise curve could potentially produce S/N>5S/N>5 transition events during LISA's lifetime.Comment: Submitted to PR

    Efficacy of eribulin for metastatic breast cancer based on localization of specific secondary metastases: a post hoc analysis

    Get PDF
    Prior pooled analysis of eribulin studies (301 and 305) indicated eribulin prolonged overall survival (OS) in patients with locally advanced/metastatic breast cancer (MBC) regardless of visceral or nonvisceral disease. This hypothesis-generating post hoc analysis examined the efficacy of eribulin according to the location of metastatic sites at baseline in 1864 pretreated patients with locally advanced/MBC from studies 301 and 305. Analyses included OS, progression-free survival (PFS), and objective response rate; OS and PFS were also analyzed according to estrogen-receptor status. Eribulin appeared efficacious in patients with locally advanced/MBC, irrespective of the location of metastases at baseline. A nominally significant difference in OS in favor of patients randomized to eribulin compared with control in patients with bone, lymph node, and chest wall/breast/skin metastases at baseline was observed. Additionally, a difference in OS was also seen in patients with liver metastases randomized to eribulin versus control (median: 13.4 versus 11.3 months, respectively; hazard ratio, 0.84 [95% CI: 0.72, 0.97]). Results of this exploratory analysis suggest that eribulin may be efficacious for the treatment of locally advanced/MBC for patients with bone, liver, lung, lymph node, and chest wall/breast/skin metastases

    Nonlinear equation for anomalous diffusion: unified power-law and stretched exponential exact solution

    Full text link
    The nonlinear diffusion equation ρt=DΔ~ρν\frac{\partial \rho}{\partial t}=D \tilde{\Delta} \rho^\nu is analyzed here, where Δ~1rd1rrd1θr\tilde{\Delta}\equiv \frac{1}{r^{d-1}}\frac{\partial}{\partial r} r^{d-1-\theta} \frac{\partial}{\partial r}, and dd, θ\theta and ν\nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (ν=1\nu =1) and the spherical anomalous diffusion for porous media (θ=0\theta=0). Exact point-source solution is obtained, enabling us to describe a large class of subdiffusion (θ>(1ν)d\theta > (1-\nu)d), normal diffusion (θ=(1ν)d\theta= (1-\nu)d) and superdiffusion (θ<(1ν)d\theta < (1-\nu)d). Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.Comment: 3 pages, 2 eps figure

    Nonlinear anomalous diffusion equation and fractal dimension: Exact generalized gaussian solution

    Full text link
    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the NN-dimensional nonlinear diffusion equation ρ/t=(Kρν)(μFρ)αρ,\partial\rho /\partial{t}={\bf \nabla} \cdot (K{\bf \nabla} \rho^{\nu})-{\bf \nabla}\cdot(\mu{\bf F} \rho)-\alpha \rho , where K=DrθK=D r^{-\theta}, ν\nu, θ\theta, μ\mu and DD are real parameters and α\alpha is a time-dependent source. This equation unifies the O'Shaugnessy-Procaccia anomalous diffusion equation on fractals (ν=1\nu =1) and the spherical anomalous diffusion for porous media (θ=0\theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.Comment: Latex, 6 pages. To appear in Phys. Rev.

    Enhancing gravitational wave astronomy with galaxy catalogues

    Full text link
    Joint gravitational wave (GW) and electromagnetic (EM) observations, as a key research direction in multi-messenger astronomy, will provide deep insight into the astrophysics of a vast range of astronomical phenomena. Uncertainties in the source sky location estimate from gravitational wave observations mean follow-up observatories must scan large portions of the sky for a potential companion signal. A general frame of joint GW-EM observations is presented by a multi-messenger observational triangle. Using a Bayesian approach to multi-messenger astronomy, we investigate the use of galaxy catalogue and host galaxy information to reduce the sky region over which follow-up observatories must scan, as well as study its use for improving the inclination angle estimates for coalescing binary compact objects. We demonstrate our method using a simulated neutron stars inspiral signal injected into simulated Advanced detectors noise and estimate the injected signal sky location and inclination angle using the Gravitational Wave Galaxy Catalogue. In this case study, the top three candidates in rank have 72%72\%, 15%15\% and 8%8\% posterior probability of being the host galaxy, receptively. The standard deviation of cosine inclination angle (0.001) of the neutron stars binary using gravitational wave-galaxy information is much smaller than that (0.02) using only gravitational wave posterior samples.Comment: Proceedings of the Sant Cugat Forum on Astrophysics. 2014 Session on 'Gravitational Wave Astrophysics

    Dalitz Plot Analysis of the Decay D^+ --> K^- pi^+ pi^+ and Indication of a Low-Mass Scalar K pi Resonance

    Full text link
    We study the Dalitz plot of the decay D^+ --> K^- pi^+ pi^+ with a sample of 15090 events from Fermilab experiment E791. Modeling the decay amplitude as the coherent sum of known K pi resonances and a uniform nonresonant term, we do not obtain an acceptable fit. If we allow the mass and width of the K^*_0(1430) to float, we obtain values consistent with those from PDG but the chi^2 per degree of freedom of the fit is still unsatisfactory. A good fit is found when we allow for the presence of an additional scalar resonance, with mass 797 +/- 19 +/- 43 MeV/c^2 and width 410 +/- 43 +/- 87 MeV/c^2. The mass and width of the K^*_0(1430) become 1459 +/- 7 +/- 5 MeV/c^2 and 175 +/- 12 +/- 12 MeV/c^2, respectively. Our results provide new information on the scalar sector in hadron spectroscopy.Comment: Accepted for publication in Physical Review Letter

    All-oral combination of oral vinorelbine and capecitabine as first-line chemotherapy in HER2-negative metastatic breast cancer: an International Phase II Trial

    Get PDF
    BACKGROUND: This multicentre, international phase II trial evaluated the efficacy and safety profile of a first-line combination of oral vinorelbine plus capecitabine for women with metastatic breast cancer (MBC). METHODS: Patients with measurable, HER2-negative disease received, as a first line in metastatic setting, 3-weekly cycles of oral vinorelbine 80 mg m(-2) (after a first cycle at 60) on day 1 and day 8, plus capecitabine 1000 mg m(-2) (750 if >or=65 years of age) twice daily, on days 1-14. Treatment was continued until progression or unacceptable toxicity. RESULTS: A total of 55 patients were enrolled and 54 were treated (median age: 58.5 years). Most (78%) had visceral involvement and 63% had received earlier (neo)adjuvant chemotherapy. The objective response rate (RECIST) in 49 evaluable patients was 51% (95% confidence interval (CI), 36-66), including complete response in 4%. The clinical benefit rate (response or stable disease for >or=6 months) was 63% (95% CI, 48-77). The median duration of response was 7.2 months (95% CI, 6.4-10.2). After a median follow-up of 41 months, median progression-free survival was 8.4 months (95% CI, 5.8-9.7) and median overall survival was 29.2 months (95% CI, 18.2-40.1). Treatment-related adverse events were manageable, the main grade 3-4 toxicity was neutropaenia (49%); two patients experienced febrile neutropaenia and three patients had a neutropaenic infection (including one septic death). A particularly low rate of alopaecia was observed. CONCLUSION: These results show that the all-oral combination of oral vinorelbine and capecitabine is an effective and well-tolerated first-line regimen for MB
    corecore