1,877 research outputs found
Simulation studies of a phenomenological model for elongated virus capsid formation
We study a phenomenological model in which the simulated packing of hard,
attractive spheres on a prolate spheroid surface with convexity constraints
produces structures identical to those of prolate virus capsid structures. Our
simulation approach combines the traditional Monte Carlo method with a modified
method of random sampling on an ellipsoidal surface and a convex hull searching
algorithm. Using this approach we identify the minimum physical requirements
for non-icosahedral, elongated virus capsids, such as two aberrant flock house
virus (FHV) particles and the prolate prohead of bacteriophage , and
discuss the implication of our simulation results in the context of recent
experimental findings. Our predicted structures may also be experimentally
realized by evaporation-driven assembly of colloidal spheres
A Novel Approach for Ellipsoidal Outer-Approximation of the Intersection Region of Ellipses in the Plane
In this paper, a novel technique for tight outer-approximation of the
intersection region of a finite number of ellipses in 2-dimensional (2D) space
is proposed. First, the vertices of a tight polygon that contains the convex
intersection of the ellipses are found in an efficient manner. To do so, the
intersection points of the ellipses that fall on the boundary of the
intersection region are determined, and a set of points is generated on the
elliptic arcs connecting every two neighbouring intersection points. By finding
the tangent lines to the ellipses at the extended set of points, a set of
half-planes is obtained, whose intersection forms a polygon. To find the
polygon more efficiently, the points are given an order and the intersection of
the half-planes corresponding to every two neighbouring points is calculated.
If the polygon is convex and bounded, these calculated points together with the
initially obtained intersection points will form its vertices. If the polygon
is non-convex or unbounded, we can detect this situation and then generate
additional discrete points only on the elliptical arc segment causing the
issue, and restart the algorithm to obtain a bounded and convex polygon.
Finally, the smallest area ellipse that contains the vertices of the polygon is
obtained by solving a convex optimization problem. Through numerical
experiments, it is illustrated that the proposed technique returns a tighter
outer-approximation of the intersection of multiple ellipses, compared to
conventional techniques, with only slightly higher computational cost
Does bariatric surgery improve adipose tissue function?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134250/1/obr12429_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134250/2/obr12429.pd
Engineering Art Galleries
The Art Gallery Problem is one of the most well-known problems in
Computational Geometry, with a rich history in the study of algorithms,
complexity, and variants. Recently there has been a surge in experimental work
on the problem. In this survey, we describe this work, show the chronology of
developments, and compare current algorithms, including two unpublished
versions, in an exhaustive experiment. Furthermore, we show what core
algorithmic ingredients have led to recent successes
Wavelet Based Fractal Analysis of Airborne Pollen
The most abundant biological particles in the atmosphere are pollen grains
and spores. Self protection of pollen allergy is possible through the
information of future pollen contents in the air. In spite of the importance of
airborne pol len concentration forecasting, it has not been possible to predict
the pollen concentrations with great accuracy, and about 25% of the daily
pollen forecasts have resulted in failures. Previous analysis of the dynamic
characteristics of atmospheric pollen time series indicate that the system can
be described by a low dimensional chaotic map. We apply the wavelet transform
to study the multifractal characteristics of an a irborne pollen time series.
We find the persistence behaviour associated to low pollen concentration values
and to the most rare events of highest pollen co ncentration values. The
information and the correlation dimensions correspond to a chaotic system
showing loss of information with time evolution.Comment: 11 pages, 7 figure
Rates of convergence for empirical spectral measures: a soft approach
Understanding the limiting behavior of eigenvalues of random matrices is the
central problem of random matrix theory. Classical limit results are known for
many models, and there has been significant recent progress in obtaining more
quantitative, non-asymptotic results. In this paper, we describe a systematic
approach to bounding rates of convergence and proving tail inequalities for the
empirical spectral measures of a wide variety of random matrix ensembles. We
illustrate the approach by proving asymptotically almost sure rates of
convergence of the empirical spectral measure in the following ensembles:
Wigner matrices, Wishart matrices, Haar-distributed matrices from the compact
classical groups, powers of Haar matrices, randomized sums and random
compressions of Hermitian matrices, a random matrix model for the Hamiltonians
of quantum spin glasses, and finally the complex Ginibre ensemble. Many of the
results appeared previously and are being collected and described here as
illustrations of the general method; however, some details (particularly in the
Wigner and Wishart cases) are new.
Our approach makes use of techniques from probability in Banach spaces, in
particular concentration of measure and bounds for suprema of stochastic
processes, in combination with more classical tools from matrix analysis,
approximation theory, and Fourier analysis. It is highly flexible, as evidenced
by the broad list of examples. It is moreover based largely on "soft" methods,
and involves little hard analysis
Unsupervised Polygonal Reconstruction of Noisy Contours by a Discrete Irregular Approach
International audienceIn this paper, we present an original algorithm to build a polygonal reconstruction of noisy digital contours. For this purpose, we first improve an algorithm devoted to the vectorization of discrete irregular isothetic objects. Afterwards we propose to use it to define a reconstruction process of noisy digital contours. More precisely, we use a local noise detector, introduced by Kerautret and Lachaud in IWCIA 2009, that builds a multi-scale representation of the digital contour, which is composed of pixels of various size depending of the local amount of noise. Finally, we compare our approach with previous works, by con- sidering the Hausdorff distance and the error on tangent orientations of the computed line segments to the original perfect contour. Thanks to both synthetic and real noisy objects, we show that our approach has interesting performance, and could be applied in document analysis systems
- …