2,299 research outputs found

    Bee-Friendly Beef: Developing Biodiverse Pastures to Increase Ecosystem Services

    Get PDF
    The capacity of grasslands to provide ecosystem services, such as pollinator resources, is often limited by lack of plant biodiversity. This is true of grasslands in the eastern US that are dominated by tall fescue (Festuca arundinacea) a non-native, cool-season grass that is typically toxic to cattle. This paper summarizes a research project in Virginia, USA exploring the idea that ecosystem services provided by tall fescue-dominated grasslands can be improved by increasing the plant biodiversity available to beef cattle and bees. Within three 6.5 ha tall fescue grasslands, we established 0.8 ha plots with a 17 species mix of native warm-season grasses (NWSGs) and wildflowers. Beginning in 2018, we measured grass and wildflower establishment, attractiveness of wildflowers to bees, abundance and diversity of bee communities in biodiverse pastures and adjacent tall fescue pastures. Many of the 18 species sown established well expect for NWSGs. Competition from wildflowers likely suppressed native grasses and limited forage availability for beef cattle. Cattle largely ignored the wildflowers. This finding suggests that cattle and pollinators can share this biodiverse grassland as their primary foods are mutually exclusive. The total number of bees was almost double in wildflower-enhanced grasslands compared with more typical tall fescue grasslands. We observed most bee landings on purple coneflower (Echinacea purpurea) and anise hyssop (Agastache foeniculum). Several weedy species such as milkweed (Asclepias syriaca) and musk thistle (Carduus nutans) were also attractive to bees. Preliminary analyses identified at least 28 bee morphospecies and a distinct bee community present in wildflower pastures. While these results were promising, more research is needed on ways to establish biodiverse grasslands so that a more optimal balance of grasses and wildflowers can be sustained to benefit both cattle production and pollinators

    Standards of Practice in Postsecondary Special Needs Programming: Student and Administrator Opinion

    Get PDF
    Standards of practice for postsecondary special needs programmes are an important element to determining programme effectiveness and programme successes. A number of groups have now suggested practice standards for postsecondary special needs programmes. We amalgamated these suggested practices and queried Ontario students and administrators regarding their opinion of these practice standards. Overall, strong support for most suggested practices was found among students and administrators. However, administrators less strongly supported practices that required enhanced funding, staffing and resources. In addition, students less strongly supported practices that could reduce individualized programming and increase time commitments. Administrators pointed out barriers to achieving practice standards. Time commitments, workload, funding, unclear working definitions (i.e., standards for transition, disabilities) and institutional policy constraints were barriers to achieving suggested practice standards.Les normes qui régissent les pratiques des programmes adaptés du niveau postsecondaire représentent un élément important dans la détermination de l'efficacité de ceux-ci et de leur succès. Un certain nombre de groupes ont suggéré des normes de pratique pour ces programmes éducatifs spéciaux. Nous avons regroupé ces pratiques suggérées et avons interrogé des étudiants en Ontario ainsi que des administrateurs afin d'obtenir leur opinion sur ces nonnes de pratique. En général, un soutien important à l'égard de la plupart des pratiques suggérées a été noté parmi les étudiants et les membres de l'administration. Toutefois, les administrateurs ont réservé un accueil moins enthousiaste aux pratiques qui nécessitent une augmentation du financement, du personnel et des ressources. De plus, les étudiants ont moins bien accueilli les pratiques qui seraient susceptibles de réduire les programmes personnalisés et qui augmenteraient leur investissement en terme de temps. Les administrateurs ont précisé les obstacles à la réalisation de ces pratiques; les barrières identifiées pour leur mise en place furent : l'investissement en terme de temps, la charge de travail, le financement, des conditions de travail mal définies (c'est-à-dire les normes de transition, d'incapacités) et les contraintes des politiques institutionnelles

    Simulation studies of a phenomenological model for elongated virus capsid formation

    Full text link
    We study a phenomenological model in which the simulated packing of hard, attractive spheres on a prolate spheroid surface with convexity constraints produces structures identical to those of prolate virus capsid structures. Our simulation approach combines the traditional Monte Carlo method with a modified method of random sampling on an ellipsoidal surface and a convex hull searching algorithm. Using this approach we identify the minimum physical requirements for non-icosahedral, elongated virus capsids, such as two aberrant flock house virus (FHV) particles and the prolate prohead of bacteriophage ϕ29\phi_{29}, and discuss the implication of our simulation results in the context of recent experimental findings. Our predicted structures may also be experimentally realized by evaporation-driven assembly of colloidal spheres

    Ear-clipping Based Algorithms of Generating High-quality Polygon Triangulation

    Full text link
    A basic and an improved ear clipping based algorithm for triangulating simple polygons and polygons with holes are presented. In the basic version, the ear with smallest interior angle is always selected to be cut in order to create fewer sliver triangles. To reduce sliver triangles in further, a bound of angle is set to determine whether a newly formed triangle has sharp angles, and edge swapping is accepted when the triangle is sharp. To apply the two algorithms on polygons with holes, "Bridge" edges are created to transform a polygon with holes to a degenerate polygon which can be triangulated by the two algorithms. Applications show that the basic algorithm can avoid creating sliver triangles and obtain better triangulations than the traditional ear clipping algorithm, and the improved algorithm can in further reduce sliver triangles effectively. Both of the algorithms run in O(n2) time and O(n) space.Comment: Proceedings of the 2012 International Conference on Information Technology and Software Engineering Lecture Notes in Electrical Engineering Volume 212, 2013, pp 979-98

    Simulations of slow positron production using a low energy electron accelerator

    Full text link
    Monte Carlo simulations of slow positron production via energetic electron interaction with a solid target have been performed. The aim of the simulations was to determine the expected slow positron beam intensity from a low energy, high current electron accelerator. By simulating (a) the fast positron production from a tantalum electron-positron converter and (b) the positron depth deposition profile in a tungsten moderator, the slow positron production probability per incident electron was estimated. Normalizing the calculated result to the measured slow positron yield at the present AIST LINAC the expected slow positron yield as a function of energy was determined. For an electron beam energy of 5 MeV (10 MeV) and current 240 μ\muA (30 μ\muA) production of a slow positron beam of intensity 5 ×\times 106^{6} s1^{-1} is predicted. The simulation also calculates the average energy deposited in the converter per electron, allowing an estimate of the beam heating at a given electron energy and current. For low energy, high-current operation the maximum obtainable positron beam intensity will be limited by this beam heating.Comment: 11 pages, 15 figures, submitted to Review of Scientific Instrument

    A Novel Approach for Ellipsoidal Outer-Approximation of the Intersection Region of Ellipses in the Plane

    Get PDF
    In this paper, a novel technique for tight outer-approximation of the intersection region of a finite number of ellipses in 2-dimensional (2D) space is proposed. First, the vertices of a tight polygon that contains the convex intersection of the ellipses are found in an efficient manner. To do so, the intersection points of the ellipses that fall on the boundary of the intersection region are determined, and a set of points is generated on the elliptic arcs connecting every two neighbouring intersection points. By finding the tangent lines to the ellipses at the extended set of points, a set of half-planes is obtained, whose intersection forms a polygon. To find the polygon more efficiently, the points are given an order and the intersection of the half-planes corresponding to every two neighbouring points is calculated. If the polygon is convex and bounded, these calculated points together with the initially obtained intersection points will form its vertices. If the polygon is non-convex or unbounded, we can detect this situation and then generate additional discrete points only on the elliptical arc segment causing the issue, and restart the algorithm to obtain a bounded and convex polygon. Finally, the smallest area ellipse that contains the vertices of the polygon is obtained by solving a convex optimization problem. Through numerical experiments, it is illustrated that the proposed technique returns a tighter outer-approximation of the intersection of multiple ellipses, compared to conventional techniques, with only slightly higher computational cost

    Wavelet Based Fractal Analysis of Airborne Pollen

    Full text link
    The most abundant biological particles in the atmosphere are pollen grains and spores. Self protection of pollen allergy is possible through the information of future pollen contents in the air. In spite of the importance of airborne pol len concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of the daily pollen forecasts have resulted in failures. Previous analysis of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply the wavelet transform to study the multifractal characteristics of an a irborne pollen time series. We find the persistence behaviour associated to low pollen concentration values and to the most rare events of highest pollen co ncentration values. The information and the correlation dimensions correspond to a chaotic system showing loss of information with time evolution.Comment: 11 pages, 7 figure

    Relative importance of βcyto- and γcyto-actin in primary mouse embryonic fibroblasts

    Get PDF
    The highly homologous β (βcyto) and γ (γcyto) cytoplasmic actins are hypothesized to carry out both redundant and unique essential functions, but studies using targeted gene knockout and siRNA-mediated transcript knockdown to examine βcyto- and γcyto-isoform--specific functions in various cell types have yielded conflicting data. Here we quantitatively characterized actin transcript and protein levels, as well as cellular phenotypes, in both gene- and transcript-targeted primary mouse embryonic fibroblasts. We found that the smooth muscle αsm-actin isoform was the dominantly expressed actin isoform in WT primary fibroblasts and was also the most dramatically up-regulated in primary βcyto- or β/γcyto-actin double-knockout fibroblasts. Gene targeting of βcyto-actin, but not γcyto-actin, led to greatly decreased cell proliferation, decreased levels of cellular ATP, and increased serum response factor signaling in primary fibroblasts, whereas immortalization induced by SV40 large T antigen supported fibroblast proliferation in the absence of βcyto-actin. Consistent with in vivo gene-targeting studies in mice, both gene- and transcript-targeting approaches demonstrate that the loss of βcyto-actin protein is more disruptive to primary fibroblast function than is the loss of γcyto-actin

    On reconfiguration of disks in the plane and related problems

    Get PDF
    We revisit two natural reconfiguration models for systems of disjoint objects in the plane: translation and sliding. Consider a set of n pairwise interior-disjoint objects in the plane that need to be brought from a given start (initial) configuration S into a desired goal (target) configuration T, without causing collisions. In the translation model, in one move an object is translated along a fixed direction to another position in the plane. In the sliding model, one move is sliding an object to another location in the plane by means of an arbitrarily complex continuous motion (that could involve rotations). We obtain various combinatorial and computational results for these two models: (I) For systems of n congruent disks in the translation model, Abellanas et al. showed that 2n − 1 moves always suffice and ⌊8n/5 ⌋ moves are sometimes necessary for transforming the start configuration into the target configuration. Here we further improve the lower bound to ⌊5n/3 ⌋ − 1, and thereby give a partial answer to one of their open problems. (II) We show that the reconfiguration problem with congruent disks in the translation model is NPhard, in both the labeled and unlabeled variants. This answers another open problem of Abellanas et al. (III) We also show that the reconfiguration problem with congruent disks in the sliding model is NP-hard, in both the labeled and unlabeled variants. (IV) For the reconfiguration with translations of n arbitrary convex bodies in the plane, 2n moves are always sufficient and sometimes necessary
    corecore