9 research outputs found

    Fast excitatory synaptic transmission mediated by nicotinic acetylcholine receptors in Drosophila neurons

    No full text
    Difficulty in recording from single neurons in vivo has precluded functional analyses of transmission at central synapses in Drosophila, where the neurotransmitters and receptors mediating fast synaptic transmission have yet to be identified. Here we demonstrate that spontaneously active synaptic connections form between cultured neurons prepared from wild-type embryos and provide the first direct evidence that both acetylcholine and GABA mediate fast interneuronal synaptic transmission in Drosophila. The predominant type of fast excitatory transmission between cultured neurons is mediated by nicotinic acetylcholine receptors (nAChRs). Detailed analysis of cholinergic transmission reveals that spontaneous EPSCs (sEPSCs) are composed of both evoked and action potentialindependent [miniature EPSC (mEPSC)] components. The mEPSCs are characterized by a broad, positively skewed amplitud

    MiR-980 Is a Memory Suppressor MicroRNA that Regulates the Autism-Susceptibility Gene A2bp1

    Get PDF
    MicroRNAs have been associated with many different biological functions, but little is known about their roles in conditioned behavior. We demonstrate that Drosophila miR-980 is a memory suppressor gene functioning in multiple regions of the adult brain. Memory acquisition and stability were both increased by miR-980 inhibition. Whole cell recordings and functional imaging experiments indicated that miR-980 regulates neuronal excitability. We identified the autism susceptibility gene, A2bp1, as an mRNA target for miR-980. A2bp1 levels varied inversely with miR-980 expression; memory performance was directly related to A2bp1 levels. In addition, A2bp1 knockdown reversed the memory gains produced by miR-980 inhibition, consistent with A2bp1 being a downstream target of miR-980 responsible for the memory phenotypes. Our results indicate that miR-980 represses A2bp1 expression to tune the excitable state of neurons, and the overall state of excitability translates to memory impairment or improvement

    The Autism Spectrum Disorders Stem Cell Resource at Children's Hospital of Orange County: Implications for Disease Modeling and Drug Discovery

    No full text
    The autism spectrum disorders (ASDs) comprise a set of neurodevelopmental disorders that are, at best, poorly understood but are the fastest growing developmental disorders in the United States. Because animal models of polygenic disorders such as the ASDs are difficult to validate, the derivation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming offers an alternative strategy for identifying the cellular mechanisms contributing to ASDs and the development of new treatment options. Access to statistically relevant numbers of ASD patient cell lines, however, is still a limiting factor for the field. We describe a new resource with more than 200 cell lines (fibroblasts, iPSC clones, neural stem cells, glia) from unaffected volunteers and patients with a wide range of clinical ASD diagnoses, including fragile X syndrome. We have shown that both normal and ASD-specific iPSCs can be differentiated toward a neural stem cell phenotype and terminally differentiated into action-potential firing neurons and glia. The ability to evaluate and compare data from a number of different cell lines will facilitate greater insight into the cause or causes and biology of the ASDs and will be extremely useful for uncovering new therapeutic and diagnostic targets. Some drug treatments have already shown promise in reversing the neurobiological abnormalities in iPSC-based models of ASD-associated diseases. The ASD Stem Cell Resource at the Children’s Hospital of Orange County will continue expanding its collection and make all lines available on request with the goal of advancing the use of ASD patient cells as disease models by the scientific community
    corecore