2,528 research outputs found
Thomas-Fermi versus one- and two-dimensional regimes of a trapped dipolar Bose-Einstein condensate
We derive the criteria for the Thomas-Fermi regime of a dipolar Bose-Einstein
condensate in cigar, pancake and spherical geometries. This also naturally
gives the criteria for the mean-field one- and two-dimensional regimes. Our
predictions, including the Thomas-Fermi density profiles, are shown to be in
excellent agreement with numerical solutions. Importantly, the anisotropy of
the interactions has a profound effect on the Thomas-Fermi/low-dimensional
criteria.Comment: 5 pages, 2 figure
Physical Conditions in Orion's Veil
Orion's veil consists of several layers of largely neutral gas lying between
us and the main ionizing stars of the Orion nebula. It is visible in 21cm H I
absorption and in optical and UV absorption lines of H I and other species.
Toward the Trapezium, the veil has two remarkable properties, high magnetic
field (~100 microGauss) and a surprising lack of molecular hydrogen given its
total hydrogen column density. Here we compute photoionization models of the
veil to establish its gas density and its distance from the Trapezium. We use a
greatly improved model of the hydrogen molecule that determines level
populations in ~1e5 rotational/vibrational levels and provides improved
estimates of molecular hydrogen destruction via the Lyman-Werner bands. Our
best fit photoionization models place the veil 1-3 pc in front of the star at a
density of 1e3-1e4 cubic centimeters. Magnetic energy dominates the energy of
non-thermal motions in at least one of the 21cm H I velocity components.
Therefore, the veil is the first interstellar environment where magnetic
dominance appears to exist. We find that the low ratio of molecular to atomic
hydrogen (< 1e-4) is a consequence of high UV flux incident upon the veil due
to its proximity to the Trapezium stars and the absence of small grains in the
region.Comment: 45 pages, 20 figures, accepted for publication in Ap
Chemical abundances in the protoplanetary disk LV2 (Orion): clues to the causes of the abundance anomaly in HII regions
Optical integral field spectroscopy of the archetype protoplanetary disk LV2
in the Orion Nebula is presented, taken with the VLT FLAMES/Argus fibre array.
The detection of recombination lines of CII and OII from this class of objects
is reported, and the lines are utilized as abundance diagnostics. The study is
complemented with the analysis of HST Faint Object Spectrograph ultraviolet and
optical spectra of the target contained within the Argus field of view. By
subtracting the local nebula background the intrinsic spectrum of the proplyd
is obtained and its elemental composition is derived for the first time. The
proplyd is found to be overabundant in carbon, oxygen and neon compared to the
Orion Nebula and the sun. The simultaneous coverage over LV2 of the CIII]
1908-A and [OIII] 5007-A collisionally excited lines (CELs) and CII and OII
recombination lines (RLs) has enabled us to measure the abundances of C++ and
O++ for LV2 with both sets of lines. The two methods yield consistent results
for the intrinsic proplyd spectrum, but not for the proplyd spectrum
contaminated by the generic nebula spectrum, thus providing one example where
the long-standing abundance anomaly plaguing metallicity studies of HII regions
has been resolved. These results would indicate that the standard
forbidden-line methods used in the derivation of light metal abundances in HII
regions in our own and other galaxies underestimate the true gas metallicity.Comment: Accepted by MNRAS November 8; 16 pages, 9 figs; typos corrected,
error in FWHMs in table 4 corrected in this versio
Physical Conditoins in Orion's Veil II: A Multi-Component Study of the Line of Sight Toward the Trapezium
Orion's Veil is an absorbing screen that lies along the line of sight to the
Orion H II region. It consists of two or more layers of gas that must lie
within a few parsecs of the Trapezium cluster. Our previous work considered the
Veil as a whole and found that the magnetic field dominates the energetics of
the gas in at least one component. Here we use high-resolution STIS UV spectra
that resolve the two velocity components in absorption and determine the
conditions in each. We derive a volume hydrogen density, 21 cm spin
temperature, turbulent velocity, and kinetic temperature, for each. We combine
these estimates with magnetic field measurements to find that magnetic energy
significantly dominates turbulent and thermal energies in one component, while
the other component is close to equipartition between turbulent and magnetic
energies. We observe molecular hydrogen absorption for highly excited v, J
levels that are photoexcited by the stellar continuum, and detect blueshifted S
III and P III. These ions must arise from ionized gas between the mostly
neutral portions of the Veil and the Trapezium and shields the Veil from
ionizing radiation. We find that this layer of ionized gas is also responsible
for He I absorption in the Veil, which resolves a 40-year-old debate on the
origin of He I absorption towards the Trapezium. Finally, we determine that the
ionized and mostly atomic layers of the Veil will collide in less than 85,000
years.Comment: 43 pages, 15 figures, to be published in Ap
Spitzer reveals what's behind Orion's Bar
We present Spitzer Space Telescope observations of 11 regions SE of the
Bright Bar in the Orion Nebula, along a radial from the exciting star
theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep
spectra with matching IRS short-high (SH) and long-high (LH) aperture grid
patterns. Most previous IR missions observed only the inner few arcmin. Orion
is the benchmark for studies of the ISM particularly for elemental abundances.
Spitzer observations provide a unique perspective on the Ne and S abundances by
virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S
(S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is
especially well determined, with a value of (1.01+/-0.08)E-4. We obtained
corresponding new ground-based spectra at CTIO. These optical data are used to
estimate the electron temperature, electron density, optical extinction, and
the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment
for the total gas-phase S abundance because no S+ line is observed by Spitzer.
The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio
may be determined even when the weaker hydrogen line, H(7-6) here, is not
measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S =
13.0+/-0.6. We derive the electron density versus distance from theta1OriC for
[S III] and [S II]. Both distributions are for the most part decreasing with
increasing distance. A dramatic find is the presence of high-ionization Ne++
all the way to the outer optical boundary ~12' from theta1OriC. This IR result
is robust, whereas the optical evidence from observations of high-ionization
species (e.g. O++) at the outer optical boundary suffers uncertainty because of
scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte
Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions
We calculate the critical rotation frequency at which a vortex state becomes
energetically favorable over the vortex-free ground state in a harmonically
trapped Bose-Einstein condensate whose atoms have dipole-dipole interactions as
well as the usual s-wave contact interactions. In the Thomas-Fermi
(hydrodynamic) regime, dipolar condensates in oblate cylindrical traps (with
the dipoles aligned along the axis of symmetry of the trap) tend to have lower
critical rotation frequencies than their purely s-wave contact interaction
counterparts. The converse is true for dipolar condensates in prolate traps.
Quadrupole excitations and centre of mass motion are also briefly discussed as
possible competing mechanisms to a vortex as means by which superfluids with
partially attractive interactions might carry angular momentumComment: 12 pages, 12 figure
Determination of the Physical Conditions of the Knots in the Helix Nebula from Optical and Infrared Observations
[Abridged] We use new HST and archived images to clarify the nature of the
knots in the Helix Nebula. We employ published far infrared spectrophotometry
and existing 2.12 micron images to establish that the population distribution
of the lowest ro-vibrational states of H2 is close to the distribution of a gas
in LTE at 988 +- 119 K. We derive a total flux from the nebula in H2 lines and
compare this with the power available from the central star for producing this
radiation. We establish that neither soft X-rays nor FUV radiation has enough
energy to power the H2 radiation, only the stellar EUV radiation shortward of
912 Angstrom does. Advection of material from the cold regions of the knots
produces an extensive zone where both atomic and molecular hydrogen are found,
allowing the H2 to directly be heated by Lyman continuum radiation, thus
providing a mechanism that can explain the excitation temperature and surface
brightness of the cusps and tails. New images of the knot 378-801 reveal that
the 2.12 micron cusp and tail lie immediately inside the ionized atomic gas
zone. This firmly establishes that the "tail" structure is an ionization
bounded radiation shadow behind the optically thick core of the knot. A unique
new image in the HeII 4686 Angstrom line fails to show any emission from knots
that might have been found in the He++ core of the nebula. We also re-examined
high signal-to-noise ratio ground-based telescope images of this same inner
region and found no evidence of structures that could be related to knots.Comment: Astronomical Journal, in press. Some figures are shown at reduced
resolution. A full resolution version is available at
http://www.ifront.org/wiki/Helix_Nebula_2007_Pape
Integral field spectroscopy of selected areas of the Bright Bar and Orion-S cloud in the Orion Nebula
We present integral field spectroscopy of two selected zones in the Orion
Nebula obtained with the Potsdam Multi-Aperture Spectrophotometer (PMAS),
covering the optical spectral range from 3500 to 7200 A and with a spatial
resolution of 1". The observed zones are located on the prominent Bright Bar
and on the brightest area at the northeast of the Orion South cloud, both
containing remarkable ionization fronts. We obtain maps of emission line fluxes
and ratios, electron density and temperatures, and chemical abundances. We
study the ionization structure and morphology of both fields, which ionization
fronts show different inclination angles with respect to the plane of the sky.
We find that the maps of electron density, O+/H+ and O/H ratios show a rather
similar structure. We interpret this as produced by the strong dependence on
density of the [OII] lines used to derive the O+ abundance, and that our
nominal values of electron density-derived from the [SII] line ratio-may be
slightly higher than the appropriate value for the O+ zone. We measure the
faint recombination lines of OII in the field at the northeast of the Orion
South cloud allowing us to explore the so-called abundance discrepancy problem.
We find a rather constant abundance discrepancy across the field and a mean
value similar to that determined in other areas of the Orion Nebula, indicating
that the particular physical conditions of this ionization front do not
contribute to this discrepancy.Comment: 15 pages, 10 figures. Accepted for publication in MNRA
Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO_2 retrievals
With the advent of dedicated greenhouse gas space-borne spectrometers sporting high resolution spectra in the O_2 A-band spectral region (755–774 nm), the retrieval of chlorophyll fluorescence has become feasible on a global scale. If unaccounted for, however, fluorescence can indirectly perturb the greenhouse gas retrievals as it perturbs the oxygen absorption features. As atmospheric CO_2 measurements are used to invert net fluxes at the land–atmosphere interface, a bias caused by fluorescence can be crucial as it will spatially correlate with the fluxes to be inverted. Avoiding a bias and retrieving fluorescence accurately will provide additional constraints on both the net and gross fluxes in the global carbon cycle. We show that chlorophyll fluorescence, if neglected, systematically interferes with full-physics multi-band X_(CO_2) retrievals using the O_2 A-band. Systematic biases in X_(CO_2) can amount to +1 ppm if fluorescence constitutes 1% to the continuum level radiance. We show that this bias can be largely eliminated by simultaneously fitting fluorescence in a full-physics based retrieval.
If fluorescence is the primary target, a dedicated but very simple retrieval based purely on Fraunhofer lines is shown to be more accurate and very robust even in the presence of large scattering optical depths. We find that about 80% of the surface fluorescence is retained at the top-of-atmosphere, even for cloud optical thicknesses around 2–5. We further show that small instrument modifications to future O_2 A-band spectrometer spectral ranges can result in largely reduced random errors in chlorophyll fluorescence, paving the way towards a more dedicated instrument exploiting solar absorption features only
Dynamical Instability of a Rotating Dipolar Bose-Einstein Condensate
We calculate the hydrodynamic solutions for a dilute Bose-Einstein condensate
with long-range dipolar interactions in a rotating, elliptical harmonic trap,
and analyse their dynamical stability. The static solutions and their regimes
of instability vary non-trivially on the strength of the dipolar interactions.
We comprehensively map out this behaviour, and in particular examine the
experimental routes towards unstable dynamics, which, in analogy to
conventional condensates, may lead to vortex lattice formation. Furthermore, we
analyse the centre of mass and breathing modes of a rotating dipolar
condensate.Comment: 4 pages, including 2 figure
- …