350 research outputs found

    How Do We Know That We Are Free?

    Get PDF
    We are naturally disposed to believe of ourselves and others that we are free: that what we do is often and to a considerable extent ‘up to us’ via the exercise of a power of choice to do or to refrain from doing one or more alternatives of which we are aware. In this article, I probe the source and epistemic justification of our ‘freedom belief’. I propose an account that (unlike most) does not lean heavily on our first-personal experience of choice and action, and instead regards freedom belief as a priori justified. I will then consider possible replies available to incompatibilists to the contention made by some compatibilists that the ‘privileged’ epistemic status of freedom belief (which my account endorses) supports a minimalist, and therefore compatibilist view of the nature of freedom itself

    Special issue of EuJAP: Free Will and Epistemology

    Get PDF
    Preface to the Special Issue on Free Will and Epistemology written by Robert Locki

    Direct Reversal Repair in Mammalian Cells

    Get PDF

    Fortified Blended Food Base: Effect of Co-Fermentation Time on Composition, Phytic Acid Content and Reconstitution Properties

    Get PDF
    peer-reviewedDehydrated blends of dairy-cereal combine the functional and nutritional properties of two major food groups. Fortified blended food base (FBFB) was prepared by blending fermented milk with parboiled wheat, co-fermenting the blend at 35 ◦C, shelf-drying and milling. Increasing co-fermentation time from 0 to 72 h resulted in powder with lower lactose, phytic acid and pH, and higher contents of lactic acid and galactose. Simultaneously, the pasting viscosity of the reconstituted base (16.7%, w/w, total solids) and its yield stress (σ0), consistency index (K) and viscosity on shearing decreased significantly. The changes in some characteristics (pH, phytic acid, η120) were essentially complete after 24 h co-fermentation while others (lactose, galactose and lactic acid, pasting viscosities, flowability) proceeded more gradually over 72 h. The reduction in phytic acid varied from 40 to 58% depending on the pH of the fermented milk prior to blending with the parboiled cereal. The reduction in phytic acid content of milk (fermented milk)-cereal blends with co-fermentation time is nutritionally desirable as it is conducive to an enhanced bioavailability of elements, such as Ca, Mg, Fe and Zn in milk-cereal blends, and is especially important where such blends serve as a base for fortified-blended foods supplied to food-insecure region

    Human gesture recognition under degraded environments using 3D-integral imaging and deep learning

    Get PDF
    In this paper, we propose a spatio-temporal human gesture recognition algorithm under degraded conditions using three-dimensional integral imaging and deep learning. The proposed algorithm leverages the advantages of integral imaging with deep learning to provide an efficient human gesture recognition system under degraded environments such as occlusion and low illumination conditions. The 3D data captured using integral imaging serves as the input to a convolutional neural network (CNN). The spatial features extracted by the convolutional and pooling layers of the neural network are fed into a bi-directional long short-term memory (BiLSTM) network. The BiLSTM network is designed to capture the temporal variation in the input data. We have compared the proposed approach with conventional 2D imaging and with the previously reported approaches using spatio-temporal interest points with support vector machines (STIP-SVMs) and distortion invariant non-linear correlation-based filters. Our experimental results suggest that the proposed approach is promising, especially in degraded environments. Using the proposed approach, we find a substantial improvement over previously published methods and find 3D integral imaging to provide superior performance over the conventional 2D imaging system. To the best of our knowledge, this is the first report that examines deep learning algorithms based on 3D integral imaging for human activity recognition in degraded environments

    Significant changes in the skin microbiome mediated by the sport of roller derby

    Get PDF
    Diverse bacterial communities live on and in human skin. These complex communities vary by skin location on the body, over time, between individuals, and between geographic regions. Culture-based studies have shown that human to human and human to surface contact mediates the dispersal of pathogens, yet little is currently known about the drivers of bacterial community assembly patterns on human skin. We hypothesized that participation in a sport involving skin to skin contact would result in detectable shifts in skin bacterial community composition. We conducted a study during a flat track roller derby tournament, and found that teammates shared distinct skin microbial communities before and after playing against another team, but that opposing teams’ bacterial communities converged during the course of a roller derby bout. Our results are consistent with the hypothesis that the human skin microbiome shifts in composition during activities involving human to human contact, and that contact sports provide an ideal setting in which to evaluate dispersal of microorganisms between people

    Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents

    Get PDF
    peer-reviewedThe gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction

    Fabrication Of All-inorganic Nanocrystal Solids Through Matrix Encapsulation Of Nanocrystal Arrays

    Get PDF
    A general strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films is reported. The present methodology goes beyond the traditional ligand-interlinking scheme and relies on encapsulation of morphologically defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles while rendering the nanocrystal film photoconductive. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal matrix interfaces, and show compelling light-harvesting performance in prototype solar cells

    The alpine flora on inselberg summits in the Maloti–Drakensberg Park, KwaZulu-Natal, South Africa

    Get PDF
    Background: Inselberg summits adjacent to the Maloti–Drakensberg escarpment occupy an alpine zone within the Drakensberg Alpine Centre (DAC). Inselbergs, the escarpment and surrounding mountains such as Platberg experience a severe climate; inselberg summits are distinct by being protected from human disturbance. Objectives: The aim of this article was to describe for the first time the flora of inselberg summits and to assess their potential contribution to conservation of DAC plant diversity. Method: We investigated whether the flora of inselberg summits formed a representative subset of the DAC flora in terms of shared, especially endemic or near endemic, species and representation of families. All species were listed for six inselbergs between Giant’s Castle and Sentinel, located in the Royal Natal National Park (RNNP) during November 2005. Comparisons, using literature, were made with floras of the DAC, as well as Platberg, an inselberg approximately 60 km north from Sentinel in the RNNP. Results: We recorded 200 species of pteridophytes and angiosperms on inselbergs, 114 DAC endemics or near endemics, one possible new species, and several range and altitudinal extensions. Asteraceae, Poaceae and Ericaceae comprised 42.1% of endemic and near endemic species, with Scrophulariaceae and Hyacinthaceae contributing 8.8%. Inselberg and DAC floras differed in respective rankings of Crassulaceae (8th vs. 15th), Polygalaceae, Apiaceae and Rosaceae (10th, 11th, 12th vs. 15th), Poaceae (2nd vs. 5th), Cyperaceae (3rd vs. 4th) and Scrophulariaceae (6th vs. 2nd). Growth forms on inselbergs were consistent with DAC flora. Inselbergs shared 40% of species with Platberg. Conclusion: Inselbergs, which supported 7.9% of species occurring in the DAC flora, are well protected from human impact, lack alien plants, but, despite this, are highly vulnerable to climate change. Conservation importance of inselbergs will increase as escarpment vegetation becomes increasingly degraded as a consequence of intensifying land use

    The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor-Metal Heterostructured Nanocrystals

    Get PDF
    The effect of hole localization on photocatalytic activity of Pt-tipped semiconductor nanocrystals is investigated. By tuning the energy balance at the semiconductor-ligand interface, we demonstrate that hydrogen production on Pt sites is efficient only when electron-donating molecules are used for stabilizing semiconductor surfaces. These surfactants play an important role in enabling an efficient and stable reduction of water by heterostructured nanocrystals as they fill vacancies in the valence band of the semiconductor domain, preventing its degradation. In particular, we show that the energy of oxidizing holes can be efficiently transferred to a ligand moiety, leaving the semiconductor domain intact. This allows reusing the inorganic portion of the degraded nanocrystal-ligand system simply by recharging these nanoparticles with fresh ligands
    corecore