6,395 research outputs found

    Sustainable development as a framework for ethics and skills in higher education computing courses

    Get PDF
    The impact of sustainable development on the curriculum remains variable, and in some disciplines the inclusion is considered by some to be inappropriate or not relevant. This paper considers the ways in which sustainable development can be embedded within the curriculum, with the dual aims of showing how it can be made both relevant to students within the context of their discipline, and how sustainable development can provide a framework for developing an appreciation of the legal, social, ethical and professional (LSEP) aspects of the discipline and to develop awareness of sustainability values in students, i.e. the meaning and aspects of sustainable development. The paper focusses on a case study in embedding sustainable development within Computer Science degree programmes, where the LSEP requirements are recognised by accrediting bodies and by many employers as essential characteristics and skills in graduates. The paper will describe how sustainable development provides an overarching framework within which to explore these issues. Moreover, the paper will include some examples of how this is successful in engaging students who may otherwise struggle to appreciate the LSEP topics. The success will be demonstrated through some objective data showing the impact of this approach to students understanding and acknowledgment of sustainability and how this may be applied to other disciplines and national contexts

    Lifetime Measurement of the 8s Level in Francium

    Full text link
    We measure the lifetime of the 8s level on a magneto-optically trapped sample of ^{210}Fr atoms with time-correlated single-photon counting. The 7P_{1/2} state serves as the resonant intermediate level for two-photon excitation of the 8s level completed with a 1300 nm laser. Analysis of the fluorescence decay through the the 7P_{3/2} level gives 53.30 +- 0.44 ns for the 8s level lifetime.Comment: 4 pages, 4 figure

    Identifying and mitigating residual vibrations in wave-based control of lumped, flexible systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Wave-based control (WBC) is a technique for motion control of under-actuated flexible sys-tems. It envisages actuator motion as launching a motion wave into the system, while simulta-neously absorbing any wave returning from the system. For rest-to-rest motion the net launch displacement is set at half the target displacement. In absorbing the returning wave and vibra-tions, WBC moves the system the remaining distance to the target, with zero steady-state error. The focus of this paper is on very small residual vibrations around the target position which can endure for a long time after arrival at target. This issue was discovered through a recent devel-opment within WBC context on controlling complex two-dimensional, mass-spring, beam-like arrays. To date their existence has been unidentified. This paper investigates and interprets the nature of these vibrations, explains and identifies them based on wave ideas, and finally offers a new wave-based approach to mitigate or suppress them. It also discusses their implication, not just for WBC but for the general problem of control of flexible systems

    Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

    Get PDF
    In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework

    Effective Critical Exponents for Dimensional Ccrossover and Quantum Systems from an Environmentally Friendly Renormalization Group

    Get PDF
    Series for the Wilson functions of an ``environmentally friendly'' renormalization group are computed to two loops, for an O(N)O(N) vector model, in terms of the ``floating coupling'', and resummed by the Pad\'e method to yield crossover exponents for finite size and quantum systems. The resulting effective exponents obey all scaling laws, including hyperscaling in terms of an effective dimensionality, {d\ef}=4-\gl, which represents the crossover in the leading irrelevant operator, and are in excellent agreement with known results.Comment: 10 pages of Plain Tex, Postscript figures available upon request from [email protected], preprint numbers THU-93/18, DIAS-STP-93-1

    Parallel transport in an entangled ring

    Get PDF
    This paper defines a notion of parallel transport in a lattice of quantum particles, such that the transformation associated with each link of the lattice is determined by the quantum state of the two particles joined by that link. We focus particularly on a one-dimensional lattice--a ring--of entangled rebits, which are binary quantum objects confined to a real state space. We consider states of the ring that maximize the correlation between nearest neighbors, and show that some correlation must be sacrificed in order to have non-trivial parallel transport around the ring. An analogy is made with lattice gauge theory, in which non-trivial parallel transport around closed loops is associated with a reduction in the probability of the field configuration. We discuss the possibility of extending our result to qubits and to higher dimensional lattices.Comment: 31 pages, no figures; v2 includes a new example of a qubit rin

    Competing magnetic fluctuations in Sr3Ru2O7 probed by Ti doping

    Full text link
    We report the effect of nonmagnetic Ti4+ impurities on the electronic and magnetic properties of Sr3Ru2O7. Small amounts of Ti suppress the characteristic peak in magnetic susceptibility near 16 K and result in a sharp upturn in specific heat. The metamagnetic quantum phase transition and related anomalous features are quickly smeared out by small amounts of Ti. These results provide strong evidence for the existence of competing magnetic fluctuations in the ground state of Sr3Ru2O7. Ti doping suppresses the low temperature antiferromagnetic interactions that arise from Fermi surface nesting, leaving the system in a state dominated by ferromagnetic fluctuations.Comment: 5 pages, 4 figures, 1 tabl

    Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse

    Get PDF
    We present results from a new set of 3D general-relativistic hydrodynamic simulations of rotating iron core collapse. We assume octant symmetry and focus on axisymmetric collapse, bounce, the early postbounce evolution, and the associated gravitational wave (GW) and neutrino signals. We employ a finite-temperature nuclear equation of state, parameterized electron capture in the collapse phase, and a multi-species neutrino leakage scheme after bounce. The latter captures the important effects of deleptonization, neutrino cooling and heating and enables approximate predictions for the neutrino luminosities in the early evolution after core bounce. We consider 12-solar-mass and 40-solar-mass presupernova models and systematically study the effects of (i) rotation, (ii) progenitor structure, and (iii) postbounce neutrino leakage on dynamics, GW, and, neutrino signals. We demonstrate, that the GW signal of rapidly rotating core collapse is practically independent of progenitor mass and precollapse structure. Moreover, we show that the effects of neutrino leakage on the GW signal are strong only in nonrotating or slowly rotating models in which GW emission is not dominated by inner core dynamics. In rapidly rotating cores, core bounce of the centrifugally-deformed inner core excites the fundamental quadrupole pulsation mode of the nascent protoneutron star. The ensuing global oscillations (f~700-800 Hz) lead to pronounced oscillations in the GW signal and correlated strong variations in the rising luminosities of antineutrino and heavy-lepton neutrinos. We find these features in cores that collapse to protoneutron stars with spin periods <~ 2.5 ms and rotational energies sufficient to drive hyper-energetic core-collapse supernova explosions. Hence, joint GW + neutrino observations of a core collapse event could deliver strong evidence for or against rapid core rotation. [abridged]Comment: 29 pages, 14 figures. Replaced with version matching published versio
    corecore