9,403 research outputs found
Dynamics of the Lyman alpha and C IV emitting gas in 3C 273
In this paper we study the variability properties of the Lyman alpha and C IV
emission lines in 3C273 using archival IUE observations. Our data show for the
first time the existence of variability on time scales of several years. We
study the spatial distribution and the velocity field of the emitting gas by
performing detailed analyses on the line variability using correlations, 1D and
2D response functions, and principal component analysis. In both lines we find
evidence for two components, one which has the dynamic properties of gas in
Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and
one which is characterized by high, blue-shifted velocities at large lag. There
is no indication of the presence of optically thick emission medium neither in
the Lya, nor in the Civ response functions. The component characterized by
blue-shifted velocities, which is comparatively much stronger in Civ than in
Lya, is more or less compatible with being the result of gas falling towards
the central black hole with free-fall acceleration. We propose however that the
line emission at high, blue-shifted velocities is better explained in terms of
entrainment of gas clouds by the jet. This gas is therefore probably
collisionally excited as a result of heating due to the intense infrared
radiation from the jet, which would explain the strength of this component in
Civ relative to Lya. This phenomenon might be a signature of disk-jet
interaction.Comment: 16 pages, 10 figures. Accepted for publication in ApJ. Uses aaste
Systematic Errors in the Estimation of Black Hole Masses by Reverberation Mapping
The mass of the central black hole in many active galactic nuclei has been
estimated on the basis of the assumption that the dynamics of the broad
emission line gas are dominated by the gravity of the black hole. The most
commonly-employed method is to estimate a characteristic size-scale from
reverberation mapping experiments and combine it with a characteristic velocity
taken from the line profiles; the inferred mass is then estimated by . We critically discuss the evidence supporting the assumption of
gravitational dynamics and find that the arguments are still inconclusive. We
then explore the range of possible systematic error if the assumption of
gravitational dynamics is granted. Inclination relative to a flattened system
may cause a systematic underestimate of the central mass by a factor , where is the aspect ratio of the flattening. The coupled
effects of a broad radial emissivity distribution, an unknown angular radiation
pattern of line emission, and sub-optimal sampling in the reverberation
experiment can cause additional systematic errors as large as a factor of 3 or
more in either direction.Comment: 19 pages, 4 figures, AASLaTeX, accepted by Ap
Near-field interaction between domain walls in adjacent Permalloy nanowires
The magnetostatic interaction between two oppositely charged transverse
domain walls (DWs)in adjacent Permalloy nanowires is experimentally
demonstrated. The dependence of the pinning strength on wire separation is
investigated for distances between 13 and 125 nm, and depinning fields up to 93
Oe are measured. The results can be described fully by considering the
interaction between the full complex distribution of magnetic charge within
rigid, isolated DWs. This suggests the DW internal structure is not appreciably
disturbed by the pinning potential, and that they remain rigid although the
pinning strength is significant. This work demonstrates the possibility of
non-contact DW trapping without DW perturbation and full continuous flexibility
of the pinning potential type and strength. The consequence of the interaction
on DW based data storage schemes is evaluated.Comment: 4 pages, 4 figures, 1 page supplimentary material (supporting.ps
Mobile Access in the Library: Some New Developments in Ireland
New insights provided by a range of specialists in the areas of social science, cognitive research and computer science research have led to increased developments and advances in the architectures for interactive and mobile learning environments. The most exciting results indicate that mobile technologies can be used to revolutionize learning and provided discontinuous rather than incremental learning opportunities in libraries and campuses worldwide. Mobile learning corroborates the view of educational philosophers such as Dewey and McLuhan that there is an intrinsic connection between communication, information provision and the learner community. Nevertheless, despite the rapid and continuing adoption of mobile devices, there has, to date, been little activity in integrating these technologies into the realm of mobile learning and the learning and library/information environments. A paradigm shift is occurring in the access people have to educational materials due to the ubiquitous availability of these materials brought about by the mobility and pervasiveness factors, which are inherent to mobile technologies. The potential for mobile technologies in education is enormous and the challenge for the e-learning community is to harness these devices for the benefit of education. One such benefit is the ever-increasing availability of educational content such as e-books on mobile devices. The availability of e-books will greatly support mobile access in the library
High-Resolution Keck Spectra of the Associated Absorption Lines in 3C 191
Associated absorption lines (AALs) are valuable probes of the gaseous
environments near quasars. Here we discuss high-resolution (6.7 km/s) spectra
of the AALs in the radio-loud quasar 3C 191 (redshift z=1.956). The measured
AALs have ionizations ranging from Mg I to N V, and multi-component profiles
that are blueshifted by ~400 to ~1400 km/s relative to the quasar's broad
emission lines. These data yield the following new results. 1) The density
based on Si II*/Si II lines is ~300 cm-3, implying a distance of ~28 kpc from
the quasar if the gas is photoionized. 2) The characteristic flow time is thus
\~3 x 10^7 yr. 3) Strong Mg I AALs identify neutral gas with very low
ionization parameter and high density. We estimate n_H > 5 x 10^4 cm-3 in this
region, compared to ~15 cm-3 where the N V lines form. 4) The total column
density is N_H < 4 x 10^18 cm-2 in the neutral gas and N_H ~ 2 x 10^20 cm-2 in
the moderately ionized regions. 5) The total mass in the AAL outflow is M ~ 2 x
10^9 Mo, assuming a global covering factor (as viewed from the quasar) of ~10%
>. 6) The absorbing gas only partially covers the background light source(s)
along our line(s) of sight, requiring absorption in small clouds or filaments
<0.01 pc across. The ratio N_H/n_H implies that the clouds have radial (line-
of-sight) thicknesses <0.2 pc. These properties might characterize a sub-class
of AALs that are physically related to quasars but form at large distances. We
propose a model for the absorber in which pockets of dense neutral gas are
surrounded by larger clouds of generally lower density and higher ionization.
This outflowing material might be leftover from a blowout associated with a
nuclear starburst, the onset of quasar activity or a past broad absorption line
(BAL) wind phase.Comment: 15 pages text plus 6 figures, in press with Ap
The Nature of Associated Absorption and the UV-X-ray Connection in 3C 288.1
We discuss new Hubble Space Telescope spectroscopy of the radio-loud quasar,
3C 288.1. The data cover ~590 A to ~1610 A in the quasar rest frame. They
reveal a wealth of associated absorption lines (AALs) with no accompanying
Lyman-limit absorption. The metallic AALs range in ionization from C III and N
III to Ne VIII and Mg X. We use these data and photoionization models to derive
the following properties of the AAL gas: 1) There are multiple ionization zones
within the AAL region, spanning a factor of at least ~50 in ionization
parameter. 2) The overall ionization is consistent with the ``warm'' X-ray
continuum absorbers measured in Seyfert 1 nuclei and other QSOs. However, 3)
the column densities implied by the AALs in 3C 288.1 are too low to produce
significant bound-free absorption at any UV-X-ray wavelengths. Substantial
X-ray absorption would require yet another zone, having a much higher
ionization or a much lower velocity dispersion than the main AAL region. 4) The
total hydrogen column density in the AAL gas is log N_H (cm-2)= 20.2. 5) The
metallicity is roughly half solar. 6) The AALs have deconvolved widths of ~900
km/s and their centroids are consistent with no shift from the quasar systemic
velocity (conservatively within +/-1000 km/s). 7) There are no direct
indicators of the absorber's location in our data, but the high ionization and
high metallicity both suggest a close physical relationship to the quasar/host
galaxy environment. Finally, the UV continuum shape gives no indication of a
``blue bump'' at higher energies. There is a distinct break of unknown origin
at ~1030 A, and the decline toward higher energies (with spectral index alpha =
-1.73, for f_nu ~ nu^alpha) is even steeper than a single power-law
interpolation from 1030 A to soft X-rays.Comment: 27 pages with figures and tables, in press with Ap
Modeling Variable Emission Lines in AGNs: Method and Application to NGC 5548
We present a new scheme for modeling the broad line region in active galactic
nuclei (AGNs). It involves photoionization calculations of a large number of
clouds, in several pre-determined geometries, and a comparison of the
calculated line intensities with observed emission line light curves. Fitting
several observed light curves simultaneously provides strong constraints on
model parameters such as the run of density and column density across the
nucleus, the shape of the ionizing continuum, and the radial distribution of
the emission line clouds. When applying the model to the Seyfert 1 galaxy NGC
5548, we were able to reconstruct the light curves of four ultraviolet
emission-lines, in time and in absolute flux. This has not been achieved by any
previous work. We argue that the Balmer lines light curves, and possibly also
the MgII2798 light curve, cannot be tested in this scheme because of the
limitations of present-day photoionization codes. Our fit procedure can be used
to rule out models where the particle density scales as r^{-2}, where r is the
distance from the central source. The best models are those where the density
scales as r^{-1} or r^{-1.5}. We can place a lower limit on the column density
at a distance of 1 ld, of N_{col}(r=1) >~ 10^{23} cm^{-2} and limit the
particle density to be in the range of 10^{12.5}>N(r=1)>10^{11} cm^{-3}. We
have also tested the idea that the spectral energy distribution (SED) of the
ionizing continuum is changing with continuum luminosity. None of the
variable-shape SED tried resulted in real improvement over a constant SED case
although models with harder continuum during phases of higher luminosity seem
to fit better the observed spectrum. Reddening and/or different composition
seem to play a minor role, at least to the extent tested in this work.Comment: 12 pages, including 9 embedded EPS figures, accepted for publication
in Ap
Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift
We show that all X-ray decay curves of GRBs measured by Swift can be fitted
using one or two components both of which have exactly the same functional form
comprised of an early falling exponential phase followed by a power law decay.
The 1st component contains the prompt gamma-ray emission and the initial X-ray
decay. The 2nd component appears later, has a much longer duration and is
present for ~80% of GRBs. It most likely arises from the external shock which
eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the
initial X-ray decay of the 1st component fades more slowly than the 2nd and
dominates at late times to form an afterglow but it is not clear what the
origin of this emission is.
The temporal decay parameters and gamma/X-ray spectral indices derived for
107 GRBs are compared to the expectations of the standard fireball model
including a search for possible "jet breaks". For ~50% of GRBs the observed
afterglow is in accord with the model but for the rest the temporal and
spectral indices do not conform to the expected closure relations and are
suggestive of continued, late, energy injection. We identify a few possible jet
breaks but there are many examples where such breaks are predicted but are
absent.
The time, T_a, at which the exponential phase of the 2nd component changes to
a final powerlaw decay afterglow is correlated with the peak of the gamma-ray
spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that
this time is in some way related to optically observed break times measured for
pre-Swift bursts.Comment: submitted to Ap
Multiwavelength Monitoring of the Narrow-Line Seyfert 1 Galaxy Akn 564. II. Ultraviolet Continuum and Emission-line Variability
We present results of an intensive two-month campaign of approximately daily
spectrophotometric monitoring of the narrow-line Seyfert 1 galaxy Akn 564 with
HST. The fractional variability amplitude of the continuum variations between
1365-3000 A is ~6%, about a factor 3 less than that found in typical Seyfert 1
galaxies over a similar period of time. However, large amplitude, short
time-scale flaring behavior is evident, with trough-to-peak flux changes of
about 18% in approximately 3 days. We present evidence for wavelength-dependent
continuum time delays, with the variations at 3000 A lagging behind those at
1365 A by about 1 day. These delays may be interpreted as evidence for a
stratified continuum reprocessing region, possibly an accretion-disk structure.
The Lyman-alpha 1216 emission-line exhibits flux variations of about 1%
amplitude.Comment: 27 pages, 14 figures. Accepted by Astrophysical Journa
The Case for Optically-Thick High Velocity Broad Line Region Gas in Active Galactic Nuclei
A combined analysis of the profiles of the main broad quasar emission lines
in both Hubble Space Telescope and optical spectra shows that while the
profiles of the strong UV lines are quite similar, there is frequently a strong
increase in the Ly-alpha/H-alpha ratio in the high-velocity gas. We show that
the suggestion that the high velocity gas is optically-thin presents many
problems. We show that the relative strengths of the high velocity wings arise
naturally in an optically-thick BLR component. An optically-thick model
successfully explains the equivalent widths of the lines, the Ly-alpha/H-alpha
ratios and flatter Balmer decrements in the line wings, the strengths of CIII]
and the lambda 1400 blend, and the strong variability of high-velocity,
high-ionization lines (especially HeII and HeI).Comment: 34 pages in AASTeX, including 10 pages of figures. Submitted to
Astrophysical Journa
- …