84 research outputs found

    Migraine Care Challenges and Strategies in US Uninsured and Underinsured Adults: A Narrative Review, Part 2

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144288/1/head13321_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144288/2/head13321.pd

    Experiments in vortex avalanches

    Full text link
    Avalanche dynamics is found in many phenomena spanning from earthquakes to the evolution of species. It can be also found in vortex matter when a type II superconductor is externally driven, for example, by increasing the magnetic field. Vortex avalanches associated with thermal instabilities can be an undesirable effect for applications, but "dynamically driven" avalanches emerging from the competition between intervortex interactions and quenched disorder constitute an interesting scenario to test theoretical ideas related with non-equilibrium dynamics. However, differently from the equilibrium phases of vortex matter in type II superconductors, the study of the corresponding dynamical phases - in which avalanches can play a role - is still in its infancy. In this paper we critically review relevant experiments performed in the last decade or so, emphasizing the ability of different experimental techniques to establish the nature and statistical properties of the observed avalanche behavior.Comment: To be published in Reviews of Modern Physics April 2004. 17 page

    Intra-week spatial-temporal patterns of crime

    Get PDF
    Since its original publication, routine activity theory has proven most instructive for understanding temporal patterns in crime. The most prominent of the temporal crime patterns investigated is seasonality: crime (most often assault) increases during the summer months and decreases once routine activities are less often outside. Despite the rather widespread literature on the seasonality of crime, there is very little research investigating temporal patterns of crime at shorter time intervals such as within the week or even within the day. This paper contributes to this literature through a spatial-temporal analysis of crime patterns for different days of the week. It is found that temporal patterns are present for different days of the week (more crime on weekends, as would be expected) and there is a spatial component to that temporal change. Specifically, aside from robbery and sexual assault at the micro-spatial unit of analysis (street segments) the spatial patterns of crime changed. With regard to the spatial pattern changes, we found that assaults and theft from vehicle had their spatial patterns change in predictable ways on Saturdays: assaults increased in the bar district and theft from vehicles increased in the downtown and recreational car park areas

    Efficient tumour formation by single human melanoma cells

    Full text link
    A fundamental question in cancer biology is whether cells with tumorigenic potential are common or rare within human cancers. Studies on diverse cancers, including melanoma, have indicated that only rare human cancer cells ( 0.1 - 0.0001%) form tumours when transplanted into non- obese diabetic/ severe combined immunodeficiency ( NOD/ SCID) mice. However, the extent to which NOD/ SCID mice underestimate the frequency of tumorigenic human cancer cells has been uncertain. Here we show that modified xenotransplantation assay conditions, including the use of more highly immunocompromised NOD/ SCID interleukin- 2 receptor gamma chain null (Il2rg(-/-)) mice, can increase the detection of tumorigenic melanoma cells by several orders of magnitude. In limiting dilution assays, approximately 25% of unselected melanoma cells from 12 different patients, including cells from primary and metastatic melanomas obtained directly from patients, formed tumours under these more permissive conditions. In single- cell transplants, an average of 27% of unselected melanoma cells from four different patients formed tumours. Modifications to xenotransplantation assays can therefore dramatically increase the detectable frequency of tumorigenic cells, demonstrating that they are common in some human cancers.Howard Hughes Medical Institute ; Allen H. Blondy Research Fellowship ; Lewis and Lillian Becker ; University of Michigan Comprehensive Cancer Center ; National Institutes of Health [CA46592]; University of Michigan Flow Cytometry Core Facility ; N. McAnsh and the University of Michigan Cancer Centre Histology Core ; National Institute of Diabetes, Digestive, and Kidney Diseases [NIH5P60- DK20572]; Michigan Diabetes Research and Training Center ; Spanish Ministry of Education ; Marie Curie Outgoing International Fellowship from the European Commission ; Australian National Health and Medical Research Council ; Human Frontiers Science Program and Australia PostThis work was supported by the Howard Hughes Medical Institute and by the Allen H. Blondy Research Fellowship. The University of Michigan Melanoma Bank was supported by a gift from Lewis and Lillian Becker. Flow cytometry was partly supported by the University of Michigan Comprehensive Cancer Center grant from the National Institutes of Health CA46592. We thank: D. Adams, M. White and the University of Michigan Flow Cytometry Core Facility for support; N. McAnsh and the University of Michigan Cancer Centre Histology Core for histological studies; G. K. Smyth for assistance with statistics; and Z. Azizan for support with tissue collection. Antibody production was supported in part by the National Institute of Diabetes, Digestive, and Kidney Diseases, grant NIH5P60- DK20572 to the Michigan Diabetes Research and Training Center. Some antibodies were provided by Caltag or by eBioscience to screen for cancer stem- cell markers. Human primary melanocyte cultures were provided by M. Soengas. Human mesenchymal stem cells were provided by Z. Wang and P. Krebsbach. E. Q. was supported by the Spanish Ministry of Education and the Marie Curie Outgoing International Fellowship from the European Commission. M. S. was supported by the Australian National Health and Medical Research Council, the Human Frontiers Science Program and Australia Post.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62970/1/nature07567.pd

    Stemming Cancer: Functional Genomics of Cancer Stem Cells in Solid Tumors

    Get PDF
    Cancer stem cells (CSCs) were discovered about 15 years ago in hematopoietic cancers. Subsequently, cancer stem cells were discovered in various solid tumors. Based on parallels with normal stem cells, a developmental process of cancer stem cells follows paths of organized, hierarchical structure of cells with different degrees of maturity. While some investigators have reported particular markers as identification of cancer stem cells, these markers require further research. In this review, we focus on the functional genomics of cancer stem cells. Functional genomics provides useful information on the signaling pathways which are consecutively activated or inactivated amongst those cells. This information is of particular importance for cancer research and clinical treatment in many respects. (1) Understanding of self-renewal mechanisms crucial to tumor growth. (2) Allow the identification of new, more specific marker for CSCs, and (3) pathways that are suitable as future targets for anti-cancer drugs. This is of particular importance, because today’s chemotherapy targets the proliferating cancer cells sparing the relatively slow dividing cancer stem cells. The first step on this long road therefore is to analyze genome-wide expression-profiles within the same type of cancer and then between different types of cancer, encircling those target genes and pathways, which are specific to these cells

    Understanding the cancer stem cell

    Get PDF
    The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of functional plasticity and clonal evolution must be incorporated into the traditional models. Slowly the genetic programmes and biological processes underlying stem cell biology are being elucidated, opening the door to the development of drugs targeting the CSC. The aim of ongoing research to understand CSCs is to develop novel stem cell-directed treatments, which will reduce therapy resistance, relapse and the toxicity associated with current, non-selective agents

    The equilibria that allow bacterial persistence in human hosts

    Full text link
    We propose that microbes that have developed persistent relationships with human hosts have evolved cross-signalling mechanisms that permit homeostasis that conforms to Nash equilibria and, more specifically, to evolutionarily stable strategies. This implies that a group of highly diverse organisms has evolved within the changing contexts of variation in effective human population size and lifespan, shaping the equilibria achieved, and creating relationships resembling climax communities. We propose that such ecosystems contain nested communities in which equilibrium at one level contributes to homeostasis at another. The model can aid prediction of equilibrium states in the context of further change: widespread immunodeficiency, changing population densities, or extinctions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62883/1/nature06198.pd

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    The psychology of memory, extended cognition, and socially distributed remembering

    Get PDF
    This paper introduces a new, expanded range of relevant cognitive psychological research on collaborative recall and social memory to the philosophical debate on extended and distributed cognition. We start by examining the case for extended cognition based on the complementarity of inner and outer resources, by which neural, bodily, social, and environmental resources with disparate but complementary properties are integrated into hybrid cognitive systems, transforming or augmenting the nature of remembering or decision-making. Adams and Aizawa, noting this distinctive complementarity argument, say that they agree with it completely: but they describe it as “a non-revolutionary approach” which leaves “the cognitive psychology of memory as the study of processes that take place, essentially without exception, within nervous systems.” In response, we carve out, on distinct conceptual and empirical grounds, a rich middle ground between internalist forms of cognitivism and radical anti-cognitivism. Drawing both on extended cognition literature and on Sterelny’s account of the “scaffolded mind” (this issue), we develop a multidimensional framework for understanding varying relations between agents and external resources, both technological and social. On this basis we argue that, independent of any more “revolutionary” metaphysical claims about the partial constitution of cognitive processes by external resources, a thesis of scaffolded or distributed cognition can substantially influence or transform explanatory practice in cognitive science. Critics also cite various empirical results as evidence against the idea that remembering can extend beyond skull and skin. We respond with a more principled, representative survey of the scientific psychology of memory, focussing in particular on robust recent empirical traditions for the study of collaborative recall and transactive social memory. We describe our own empirical research on socially distributed remembering, aimed at identifying conditions for mnemonic emergence in collaborative groups. Philosophical debates about extended, embedded, and distributed cognition can thus make richer, mutually beneficial contact with independently motivated research programs in the cognitive psychology of memory.40 page(s
    • 

    corecore