5 research outputs found

    Quantifying energy demand and greenhouse gas emissions of road infrastructure projects: An LCA case study of the Oslo fjord crossing in Norway

    Get PDF
    The road sector consumes large amounts of materials and energy and produces large quantities of greenhouse gas emissions, which can be reduced with correct information in the early planning stages of road project. An important aspect in the early planning stages is the choice between alternative road corridors that will determine the route distance and the subsequent need for different road infrastructure elements, such as bridges and tunnels. Together, these factors may heavily influence the life cycle environmental impacts of the road project. This paper presents a case study for two prospective road corridor alternatives for the Oslo fjord crossing in Norway and utilizes in a streamlined model based on life cycle assessment principles to quantify cumulative energy demand and greenhouse gas emissions for each route. This technique can be used to determine potential environmental impacts of road projects by overcoming several challenges in the early planning stages, such as the limited availability of detailed life cycle inventory data on the consumption of material and energy inputs, large uncertainty in the design and demand for road infrastructure elements, as well as in future traffic and future vehicle technologies. The results show the importance of assessing different life cycle activities, input materials, fuels and the critical components of such a system. For the Oslo fjord case, traffic during operation contributes about 94 % and 89 % of the annual CED and about 98 % and 92 % of the annual GHG emissions, for a tunnel and a bridge fjord crossing alternative respectively

    Hybrid energy storage systems of energy- and power-dense batteries: a survey on modelling techniques and control methods

    No full text
    The impact of global warming and climate change has forced countries to introduce strict policies and decarbonization goals toward sustainable development. To achieve the decarbonization of the economy, a substantial increase of renewable energy sources is required to meed energy demand and to transition away from fossil fuels. However, renewables are sensitive to environmental conditions, which may lead to imbalances between energy supply and demand. Battery energy storage systems are gaining more attention for balancing energy systems in existing grid networks at various levels such as bulk power management, transmission and distribution, and for end-users. Integrating battery energy storage systems with renewables can also solve reliability issues related to transient energy production and be used as a buffer source for electrical vehicle fast charging. Despite these advantages, batteries are still expensive and typically built for a single application – either for an energy- or power-dense application – which limits economic feasibility and flexibility. This paper presents a theoretical approach of a hybrid energy storage system that utilizes both energy- and power-dense batteries serving multiple grid applications. The proposed system will employ second use electrical vehicle batteries in order to maximise the potential of battery waste. The approach is based on a survey of battery modelling techniques and control methods. It was found that equivalent circuit models as well as unified control methods are best suited for modelling hybrid energy storages for grid applications. This approach for hybrid modelling is intended to help accelerate the renewable energy transition by providing reliable energy storage

    Life cycle assessment of winter road maintenance

    No full text
    Purpose: Winter road maintenance in the Nordic climate is demanding due to challenging weather conditions, high precipitation, and icy conditions. As a leading country in the transition to low-emission transport, Norway must work to reduce their emissions while providing a safe level of service through winter maintenance operations. This article investigates the environmental impacts of winter road maintenance (WRM) in Norway both today and under a climate change scenario predicted for 2050. Methods: Life cycle assessment (LCA) is used to evaluate the environmental impact of the functional unit “average winter road maintenance in Norway on national and county roads per km.lane.” The ReCiPe (hierarchy) method was used to identify and categorize emissions related to WRM to show how different factors affect the system and to reveal hidden emissions hotspots. Real-time data from WRM vehicles were used to determine how fuel consumption is affected by gradient and weather. Producers and operators provided other relevant information on WRM vehicles. Official reports supplied information on deicer quantities used and the total distance driven by WRM vehicles in Norway. Results and discussion: The quantity of deicer used is the main source of emissions contributing toward all impact categories. The effect of deicer is likely to be even higher in certain impact categories. The environmental impact of the deicer after application is not included. The representation of WRM in existing emissions data is limited despite the considerable amount of deicer applied and the long distances that WRM vehicles travel. The results document how energy use throughout the system is another important source of emissions. Various parameters, such as road gradient, vehicle properties, driver behavior, and weather, affect the fuel consumption of WRM vehicles, with weather being the most important of these. Conclusions: Significant potential for emissions reductions from WRM was found, and WRM operations should be included in cold-climate road LCA studies. The environmental impacts of deicer application are especially high compared to the mechanical clearing of roads and contribute strongly to impact categories such as terrestrial, freshwater, and human toxicity and to the formation of particulate matter
    corecore