22 research outputs found

    The outlook for barley

    Get PDF
    World production of barley in 1968 was 4,107 million bushels—an increase of 7 per cent, on the previous year. Further increases are estimated for the 1969 season, especially in Canada and France. World production is expected to be 3 per cent, higher than in 1968

    Phosphorus in the landscape: diffuse sources to surface waters. Land and Water Resources Research and Development Corporation. Occasional Paper 16/98

    Get PDF
    The National Eutrophication Management Program (NEMP) and Environment Australia convened a workshop to develop a coherent overview of the sources and transport of diffuse phosphorus in Australian catchments based on the latest knowledge. The Land and Water Resources Research and Development Corporation (LWRRDC) and the Murray–Darling Basin Commission (MDBC) jointly fund NEMP. A select group of scientists attended the workshop and developed a coherent statement about phosphorus sources and transport in Australian catchments. The group did not extend this statement to include recommended management practices. This paper reports the findings from the workshop. State governments have developed algal and nutrient management strategies in response to concerns about the frequency and severity of algal blooms, including cyanobacterial blooms, in Australian rivers and estuaries. There is an emphasis on phosphorus management, particularly in rural environments, now that nutrients are recognised as fundamental drivers of algal growth. Best management practices (BMPs) were developed for these strategies on the basis of the limited scientific evidence that was available at the time. The absence of a significant body of Australian information meant that there was a reliance on overseas research findings to develop such BMPs. A number of research projects have been completed in recent years on the sources and transport of nutrients in Australian catchments that challenge the Northern Hemisphere model of nutrient behaviour and will have implications for future development of BMPs. Principal conclusions 1. The studies presented in the workshop demonstrate that control of phosphorus entering surface waters must start with land management that minimises accelerated erosion and overland flow of water potentially rich in phosphorus. Heavily grazed lands, irrigation areas and intensive animal and horticultural industries are at risk, especially at the onset of rainy seasons and during periods of high rain intensity. 2. The transport of phosphorus from diffuse sources in landscapes can occur in both dissolved and particulate form. This can be due to different mobilisation and delivery mechanisms operating in different environments. Phosphorus mobilisation and delivery 1. Diffuse sources of phosphorus are the dominant component in most Australian catchments. Episodic rainfall is responsible for the bulk of phosphorus loss from the landscape. The mechanisms vary with each catchment. 2. Particulate phosphorus is carried by overland flow, resulting from run-off and erosion. In high to medium rainfall environments most is carried as filterable reactive phosphorus of less than 0.45 microns. Although most of the coarser materials from high parts of the landscape are deposited before they reach a watercourse, the particles ultimately carried into drainage lines are phosphorus-enriched by processes of sorting and filtration. 3. In river systems studied in the Murray–Darling Basin river sediments that originate from gully erosion and stream-bank collapse of readily dispersible soils carry most of the diffuse-source phosphorus. It is very likely that most of the phosphorus on these sediments is ‘native’ phosphorus coming from subsoils. 2 Phosphorus in the landscape: diffuse sources to surface waters Although the major episodes of gully formation occurred several decades ago, inputs of sediments and phosphorus from these sources continue at a high rate. Reduced input rates can best be achieved by targeting the gullies themselves and stabilising them by conservation works—particularly in small headwater catchments. 4. In larger dry-land catchments, fertiliser phosphorus is generally not an important component of phosphorus loss/export, although it may be locally significant. 5. Local soil, vegetation, terrain and climate conditions dictate whether surface erosion is the dominant source of phosphorus into a watercourse. To describe phosphorus exports from a specific landscape by surface erosion requires local studies. However, guidelines can be developed for management purposes to identify and minimise sources of phosphorus carried by overland flow. 6. Potential sources of diffuse phosphorus run-off occur wherever fertilisers are applied to soils that are already wet at the surface, or that may become wet by seasonally emerging groundwater. The magnitude of the loss will be greater if the application occurs on bare soils, or if it is next to a waterbody. 7. Dissolved phosphorus (from fertilisers and other sources) is readily mobilised and transported directly where the soil has both little ability to bind the phosphorus and a high leaching rate, as occurs in sandy regions of high rainfall around the continent. Phosphorus-laden water then travels via overland or shallow sub-surface flow to surface waterbodies quite quickly, unless other processes impede the movement. If the dissolved phosphorus moves via deep groundwater the time scales for its reappearance in surface water are generally large. 8. Dissolved phosphorus may also enter tributary waterbodies in headwater catchments via shortcircuit pathways, such as macropores, but this is only likely to be important over distances of hundreds of metres. However, these sub-surface pathways may reduce the effectiveness of local management practices that do not take them into account. 9. Large amounts of dissolved phosphorus are also being produced from irrigated dairy pastures (and possibly from other irrigation enterprises also). There is little or no sub-surface movement because soils are generally high in clay and flat. Phosphorus-laden water is pumped or drained across the land surface to channels. The time scale of dissolved phosphorus movement is comparable with the time with which the water itself moves. Once within drainage channels and streambeds the dissolved phosphorus fraction may be partially re-adsorbed onto particulates. 10. Large quantities of dissolved phosphorus are found in surface waters next to areas where animal excreta or over-fertilised market gardens give rise to phosphorus in surface wastewater that flows directly into waterways. These situations are most likely to arise in catchments that contain mixtures of horticultural, dairying, hobby-farming and similar land uses. Where farm dams are abundant a significant fraction of this phosphorus will not enter streams but will be retarded or retained in the landscape

    Syntheses, Characterization, Density Functional Theory Calculations, and Activity of Tridentate SNS Zinc Pincer Complexes Based on Bis-Imidazole or Bis-Triazole Precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-donor functionalities (SNS), based on bis-imidazole or bis-triazole salts were metallated with ZnCl2 to give new tridentate SNS pincer zinc(II) complexes [(SNS)ZnCl]+. The zinc complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH) and were characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies, electrospray mass spectrometry, and elemental analysis. The zinc complexes feature SNS donor atoms and pseudotetrahedral geometry about the zinc center, as is seen for liver alcohol dehydrogenase. The bond lengths and bond angles of the zinc complexes correlate well to those in horse LADH. The SNS ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies, elemental analysis, and cyclic voltammetry, and were found to be redox active. Gaussian calculations were performed and agree with the experimentally observed oxidation potentials for the pincer ligand precursors. The zinc complexes were screened for the reduction of electron-poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH), and it was determined that they enhance the reduction of electron-poor aldehydes. The SNS zinc pincer complexes with bis-triazole ligand precursors exhibit higher activity for the reduction of 4-nitrobenzaldehyde than do SNS zinc pincer complexes with bis-imidazole ligand precursors. Quantitative stoichiometric conversion was seen for the reduction of pyridine-2-carboxaldehyde via SNS zinc pincer complexes with either bis-imidazole or bis-triazole ligand precursors

    Syntheses, characterization, density functional theory calculations, and activity of tridentate SNS zinc pincer complexes

    Get PDF
    A series of tridentate SNS ligand precursors were metallated with ZnCl2 to give new tridentate SNS pincer zinc complexes. The zinc complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH) and were characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies and electrospray mass spectrometry. The bond lengths and bond angles of the zinc complexes correlate well to those in horse LADH. The zinc complexes feature SNS donor atoms and pseudotetrahedral geometry about the zinc center, as is seen for liver alcohol dehydrogenase. The SNS ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies and cyclic voltammetry, and were found to be redox active. Gaussian calculations were performed and agree quite well with the experimentally observed oxidation potential for the pincer ligand. The zinc complexes were screened for the reduction of electron poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH). The zinc complexes enhance the reduction of electron poor aldehydes. Density functional theory calculations were performed to better understand why the geometry about the zinc center is pseudo-tetrahedral rather than pseudo-square planar, which is seen for most pincer complexes. For the SNS tridentate pincer complexes, the data indicate that the pseudo-tetrahedral geometry was 43.8 kcal/mol more stable than the pseudo-square planar geometry. Density functional theory calculations were also performed on zinc complexes with monodentate ligands and the data indicate that the pseudo-tetrahedral geometry was 30.6 kcal/mol more stable than pseudo-square planar geometry. Overall, the relative stabilities of the pseudo-tetrahedral and pseudo-square planar systems are the same for this coordination environment whether the ligand set is a single tridentate SNS system or is broken into three separate units. The preference of a d10 Zn center to attain a tetrahedral local environment trumps any stabilization gained by removal of constraints within the ligand set

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Live sheep exports : market update

    No full text
    The live sheep export trade has made an important contribution to the Western Australian sheep industry, with the value of exports peaking at $100 million f.o.b. in 1980-81. In that year Western Australia accounted for 61 per cent of the value of Australian exports of live sheep. In addition, the growth of the live export industry has contribuited to higher prices for other catagories of sheep than would otherwise have been the case

    The outlook for barley

    No full text
    World production of barley in 1968 was 4,107 million bushels—an increase of 7 per cent, on the previous year. Further increases are estimated for the 1969 season, especially in Canada and France. World production is expected to be 3 per cent, higher than in 1968

    A systematic revision of the asterinid genus Aquilonastra OLoughlin, 2004 (Echinodermata: Asteroidea)

    No full text
    Volume: 63Start Page: 257End Page: 28
    corecore