4 research outputs found

    Whole Earth Telescope Observations of the Helium Interacting Binary PG 1346+082 (CR Bootis)

    Get PDF
    We present our analysis of 240 hr of white-light, high-speed photometry of the dwarf nova-like helium variable PG 1346+082 (CR Boo). We identify two frequencies in the low-state power spectrum, at 679.670 ± 0.004 μHz and 669.887 ± 0.008 μHz. The 679.670 μHz variation is coherent over at least a 2 week time span, the first demonstration of a phase-coherent photometric variation in any dwarf nova-like interacting binary white dwarf system. The high-state power spectrum contains a complex fundamental with a frequency similar, but not identical, to the low-state spectrum, and a series of harmonics not detected in low state. We also uncover an unexpected dependence of the high-frequency power\u27s amplitude and frequency structure on overall system magnitude. We discuss these findings in light of the general AM CVn system model, particularly the implications of the high-order harmonics on future studies of disk structure, mass transfer, and disk viscosity

    Asteroseismology of the DOV Star PG 1159-035 with the Whole Earth Telescope

    No full text
    We report the results from 264.1 hr of nearly continuous time-series photometry on the pulsating pre-white dwarf star (DOV) PG 1159-035. The high-resolution power spectrum of this data set is dominated by power in the range from roughly 1000 to 2600 μHz (1000 s to 385 s periods). This power is completely resolved into 125 individual frequencies; we have identified 101 of them with specific, quantized pulsation modes, and the rest are completely consistent with such modal assignment. The luminosity variations are therefore certainly the result of g-mode pulsations. Although the amplitudes of some of the peaks exhibit significant variations on time scales of a year or so, the underlying frequency structure of the pulsations is stable over much longer intervals. With the help of existing linear theory we use these identifications to determine, or strongly constrain, many of the fundamental physical parameters describing this star. We find its mass to be 0.586 M⊙, its rotation period 1.38 days, its magnetic field less than 6000 G, its pulsation and rotation axes to be aligned, and its outer layers to be compositionally stratified. With straightforward extensions of existing theory it may be possible to determine uniquely from this data set all of the parameters necessary to construct a quantitative model of its interior. These observations also reveal several interesting phenomena that challenge the current theory of nonradial pulsations, and may require substantial new developments to describe them

    Asteroseismology of the dov star PG 1159-035 with the Whole Earth Telescope

    Get PDF
    We report the results from 264.1 hr of nearly continuous time-series photometry on the pulsating pre-white dwarf star (DOV) PG 1159-035. The high-resolution power spectrum of this data set is dominated by power in the range from roughly 1000 to 2600 μHz (1000 s to 385 s periods). This power is completely resolved into 125 individual frequencies; we have identified 101 of them with specific, quantized pulsation modes, and the rest are completely consistent with such moda! assignment. The luminosity variations are therefore certainly the result of g-mode pulsations. Although the amplitudes of some of the peaks exhibit significant variations on time scales of a year or so, the underlying frequency structure of the pulsations is stable over much longer intervals. With the help of existing linear theory we use these identifications to determine, or strongly constrain, many of the fundamental physical parameters describing this star. We find its mass to be 0.586 Mʘ , its rotation period 1.38 days, its magnetic field less than 6000 G, its pulsation and rotation axes to be aligned, and its outer layers to be compositionally stratified. With straightforward extensions of existing theory it may be pos­ sible to determine uniquely from this data set ali of the parameters necessary to construct a quantitative model of its interior. These observations also reveal severa! interesting phenomena that challenge the current theory of nonradial pulsations, and may require substantial new developments to describe them
    corecore