51 research outputs found

    Exploring the Effect of G6PC2 Single Nucleotide Polymorphisms on Enzyme Activity and Human Health

    Get PDF
    G6PC2 encodes a glucose-6-phosphatase catalytic subunit that is highly expressed in pancreatic islet beta cells. Genome wide association studies (GWAS) have shown that single nucleotide polymorphisms (SNPs) in the G6PC2 gene are associated with variations in fasting blood glucose (FBG), a parameter linked with risk for type 2 diabetes (T2D). Studies in mice have complemented these GWAS data by showing that deletion of G6pc2 abolishes islet glucose-6-phosphatase activity and lowers FBG. We hypothesize that G6pc2 forms a substrate cycle with glucokinase that determines the sensitivity of glucose-stimulated insulin secretion (GSIS) to glucose. In support of this hypothesis we have previously shown that deletion of G6pc2 enhances GSIS at sub-maximal glucose concentrations and abolishes glucose cycling in isolated islets. More recently we have demonstrated that deletion of G6pc2 enhances glycolysis in isolated mouse islets, and that high rates of glucose cycling are also detected in human islets. Our broad hypothesis is that the results of these studies will strongly suggest that G6PC2 inhibition should be considered as a novel therapeutic strategy for lowering FBG and thereby preventing T2D. To extend these observations we have developed a novel intact cell assay for G6PC2 activity. This assay relies on the observation that CREB and ChREBP bound to the rat G6PC1 promoter are highly glucose responsive in the rat islet-derived 832/13 cell line and the fact that endogenous G6PC2 is absent. In the presence of catalytically-dead G6PC2, glucose stimulates G6PC1-luciferase fusion gene expression. However, this induction is blunted in the presence of wild type G6PC2. We are using this assay to determine the effect of non-synonymous G6PC2 SNPs on G6PC2 activity and then examining the association between SNPs that markedly affect G6PC2 activity with their effects on human health as assessed using Vanderbilt’s BioVU biobank. These data will reveal whether SNPs in G6PC2 are associated with only altered FBG or whether G6PC2 affects other aspects of human health

    User\u27s Guide to SNAP for ArcGIS : ArcGIS Interface for Scheduling and Network Analysis Program

    Get PDF
    This document introduces a computer software named SNAP for ArcGIS®, which has been developed to streamline scheduling and transportation planning for timber harvest areas. Using modern optimization techniques, it can be used to spatially schedule timber harvest with consideration of harvesting costs, multiple products, alternative destinations, and transportation systems. SNAP for ArcGIS attempts either to maximize a net present value or minimize discounted costs of harvesting and transportation over the planning horizon while meeting given harvest volume and acreage constraints. SNAP for ArcGIS works in the ArcGIS environment and provides an easy-to-use analytical tool for sophisticated spatial planning of timber harvest

    The Geographically Contiguous and Expanding Coastal Range of the Northern Curlytail Lizard (Leiocephalus carinatus armouri ) in Florida

    Get PDF
    We surveyed for the presence of the Northern Curlytail Lizard, Leiocephalus carinatus armouri, from Port Salerno, Martin County, FL, northward to the Indian River-Brevard county line to determine the extent to which this species occurs along the Florida East Coast. The geographic range of L. c. armouri appears to be uninterrupted along the coast from northern Broward County through Palm Beach County. The heavily modified coastal habitat provided this species with the open sunny conditions and cement analogues to the rocky substratum to which it is adapted. Its ubiquity, rate of geographic expansion, combined with its carnivorous habits and large body size, have long since set the stage for an extensive restructuring of the indigenous and exotic lizard fauna in a way that has not been seen since its initial establishment in Palm Beach County almost one-half century ago. Urban heat island effects notwithstanding, frost isotherms predict instability of populations north of Fort Pierce and just below Sarasota on the West Coast

    Robust Inference of Monocot Deep Phylogeny Using an Expanded Multigene Plastid Data Set

    Get PDF
    We use multiple photosynthetic, chlororespiratory, and plastid translation apparatus loci and their associated noncoding regions (ca. 16 kb per taxon, prior to alignment) to make strongly supported inferences of the deep internal branches of monocot phylogeny. Most monocot relationships are robust (an average of ca. 91 % bootstrap support per branch examined), including those poorly supported or unresolved in other studies. Our data strongly support a sister-group relationship between Asparagales and the commelinid monocots, the inclusion of the orchids in Asparagales, and the status of Petrosaviaceae as the sister group of all monocots except Acorus and Alismatales. The latter finding supports recognition of the order Petrosaviales. Also strongly supported is a placement of Petermannia disjunct from Colchicaceae (Liliales) and a sister-group relationship between Commelinales and Zingiberales. We highlight the remaining weak areas of monocot phylogeny, including the positions of Dioscoreales, Liliales, and Pandanales. Despite substantial variation in the overall rate of molecular evolution among lineages, inferred amounts of change among codon-position data partitions are correlated with each other across the monocot tree, consistent with low incongruence between these partitions. Ceratophyllum and Chloranthaceae appear to have a destabilizing effect on the position of the monocots among other angiosperms; the issue of monocot placement in broader angiosperm phylogeny remains problematic

    Abatacept, Cenicriviroc, or Infliximab for Treatment of Adults Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial

    Get PDF
    IMPORTANCE: Immune dysregulation contributes to poorer outcomes in COVID-19. OBJECTIVE: To investigate whether abatacept, cenicriviroc, or infliximab provides benefit when added to standard care for COVID-19 pneumonia. DESIGN, SETTING, AND PARTICIPANTS: Randomized, double-masked, placebo-controlled clinical trial using a master protocol to investigate immunomodulators added to standard care for treatment of participants hospitalized with COVID-19 pneumonia. The results of 3 substudies are reported from 95 hospitals at 85 clinical research sites in the US and Latin America. Hospitalized patients 18 years or older with confirmed SARS-CoV-2 infection within 14 days and evidence of pulmonary involvement underwent randomization between October 2020 and December 2021. INTERVENTIONS: Single infusion of abatacept (10 mg/kg; maximum dose, 1000 mg) or infliximab (5 mg/kg) or a 28-day oral course of cenicriviroc (300-mg loading dose followed by 150 mg twice per day). MAIN OUTCOMES AND MEASURES: The primary outcome was time to recovery by day 28 evaluated using an 8-point ordinal scale (higher scores indicate better health). Recovery was defined as the first day the participant scored at least 6 on the ordinal scale. RESULTS: Of the 1971 participants randomized across the 3 substudies, the mean (SD) age was 54.8 (14.6) years and 1218 (61.8%) were men. The primary end point of time to recovery from COVID-19 pneumonia was not significantly different for abatacept (recovery rate ratio [RRR], 1.12 [95% CI, 0.98-1.28]; P = .09), cenicriviroc (RRR, 1.01 [95% CI, 0.86-1.18]; P = .94), or infliximab (RRR, 1.12 [95% CI, 0.99-1.28]; P = .08) compared with placebo. All-cause 28-day mortality was 11.0% for abatacept vs 15.1% for placebo (odds ratio [OR], 0.62 [95% CI, 0.41-0.94]), 13.8% for cenicriviroc vs 11.9% for placebo (OR, 1.18 [95% CI 0.72-1.94]), and 10.1% for infliximab vs 14.5% for placebo (OR, 0.59 [95% CI, 0.39-0.90]). Safety outcomes were comparable between active treatment and placebo, including secondary infections, in all 3 substudies. CONCLUSIONS AND RELEVANCE: Time to recovery from COVID-19 pneumonia among hospitalized participants was not significantly different for abatacept, cenicriviroc, or infliximab vs placebo. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04593940

    Global Carbon Budget 2022

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2_2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2_2 emissions (EFOS_{FOS}) are based on energy statistics and cement production data, while emissions from land-use change (ELUC_{LUC}), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2_2 concentration is measured directly, and its growth rate (GATM_{ATM}) is computed from the annual changes in concentration. The ocean CO2_2 sink (SOCEAN_{OCEAN}) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2_2 sink (SLAND_{LAND}) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM_{IM}), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS_{FOS} increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr1^{−1} (9.9 ± 0.5 GtC yr1^{−1} when the cement carbonation sink is included), and ELUC_{LUC} was 1.1 ± 0.7 GtC yr1^{−1}, for a total anthropogenic CO2_2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr1^{−1} (40.0 ± 2.9 GtCO2_2). Also, for 2021, GATM_{ATM} was 5.2 ± 0.2 GtC yr1^{−1} (2.5 ± 0.1 ppm yr1^{−1}), SOCEAN_{OCEAN} was 2.9  ± 0.4 GtC yr1^{−1}, and SLAND_{LAND} was 3.5 ± 0.9 GtC yr1^{−1}, with a BIM_{IM} of −0.6 GtC yr1^{−1} (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2_2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS_{FOS} relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2_2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr1^{−1} persist for the representation of annual to semi-decadal variability in CO2_2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2_2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)

    Search for pair production of excited top quarks in the lepton+jets final state

    Get PDF
    corecore