4,010 research outputs found

    Faradaic processes beyond Nernstā€™s law: density functional theory assisted modelling of partial electron delocalisation and pseudocapacitance in graphene oxides

    Get PDF
    The study of electron delocalisation in oxygen atom segregated zones in graphene, aided by the first-principles density functional theory, has revealed extra energy bands of ā‰„ 2 eV wide around the Fermi level, predicting faradaic charge storage occurring in a wide range of potentials, which disagrees with Nernstā€™s Law but accounts well for the so called pseudocapacitance of heteroatommodified graphene based electrode materials in supercapacitors

    Observation of multiple sausage oscillations in cool postflare loop

    Full text link
    Using simultaneous high spatial (1.3 arc sec) and temporal (5 and 10 s) resolution H-alpha observations from the 15 cm Solar Tower Telescope at ARIES, we study the oscillations in the relative intensity to explore the possibility of sausage oscillations in the chromospheric cool postflare loop. We use standard wavelet tool, and find the oscillation period of ~ 587 s near the loop apex, and ~ 349 s near the footpoint. We suggest that the oscillations represent the fundamental and the first harmonics of fast sausage waves in the cool postflare loop. Based on the period ratio P1/P2 ~ 1.68, we estimate the density scale height in the loop as ~ 17 Mm. This value is much higher than the equilibrium scale height corresponding to H-alpha temperature, which probably indicates that the cool postflare loop is not in hydrostatic equilibrium. Seismologically estimated Alfv\'en speed outside the loop is ~ 300-330 km/s. The observation of multiple oscillations may play a crucial role in understanding the dynamics of lower solar atmosphere, complementing such oscillations already reported in the upper solar atmosphere (e.g., hot flaring loops).Comment: 13 pages, 4 figures, accepted in MNRA

    Adsorption and charge transfer interactions of bi-isonicotinic acid on Ag(111)

    Get PDF
    The adsorption and charge transfer dynamics of the organic molecule bi-isonicotinic acid (4,4ā€²-dicarboxy-2,2ā€²-bipyridine) on single crystal Ag(111) has been studied using synchrotron radiation-based photoemission, x-ray absorption and resonant core spectroscopies. Measurements for multilayer and monolayer coverage are used to determine the nature of the molecule-surface interactions and the molecular orientation. An experimental density of states for the monolayer with respect to the underlying metal surface is obtained by combining x-ray absorption spectroscopy at the N 1s edge and valence photoemission to measure the unoccupied and occupied valence states, respectively. This shows that the lowest unoccupied molecular orbital in the core-excited state lies energetically below the Fermi level of the surface allowing charge transfer from the metal into this orbital. Resonant photoelectron spectroscopy was used to probe this charge transfer in the context of super-spectator and super-Auger electron transitions. The results presented provide a novel interpretation of resonant core-level spectroscopy to explore ultra-fast charge transfer between an adsorbed organic molecule and a metal surface through the observation of electrons from the metal surface playing a direct role in the core-hole decay of the core-excited molecule

    The inter-rater reliability of the diagnosis of surgical site infection in the context of a clinical trial.

    Get PDF
    ObjectivesThe diagnosis of surgical site infection following endoprosthetic reconstruction for bone tumours is frequently a subjective diagnosis. Large clinical trials use blinded Central Adjudication Committees (CACs) to minimise the variability and bias associated with assessing a clinical outcome. The aim of this study was to determine the level of inter-rater and intra-rater agreement in the diagnosis of surgical site infection in the context of a clinical trial.Materials and methodsThe Prophylactic Antibiotic Regimens in Tumour Surgery (PARITY) trial CAC adjudicated 29 non-PARITY cases of lower extremity endoprosthetic reconstruction. The CAC members classified each case according to the Centers for Disease Control (CDC) criteria for surgical site infection (superficial, deep, or organ space). Combinatorial analysis was used to calculate the smallest CAC panel size required to maximise agreement. A final meeting was held to establish a consensus.ResultsFull or near consensus was reached in 20 of the 29 cases. The Fleiss kappa value was calculated as 0.44 (95% confidence interval (CI) 0.35 to 0.53), or moderate agreement. The greatest statistical agreement was observed in the outcome of no infection, 0.61 (95% CI 0.49 to 0.72, substantial agreement). Panelists reached a full consensus in 12 of 29 cases and near consensus in five of 29 cases when CDC criteria were used (superficial, deep or organ space). A stable maximum Fleiss kappa of 0.46 (95% CI 0.50 to 0.35) at CAC sizes greater than three members was obtained.ConclusionsThere is substantial agreement among the members of the PARITY CAC regarding the presence or absence of surgical site infection. Agreement on the level of infection, however, is more challenging. Additional clinical information routinely collected by the prospective PARITY trial may improve the discriminatory capacity of the CAC in the parent study for the diagnosis of infection.Cite this article: J. Nuttall, N. Evaniew, P. Thornley, A. Griffin, B. Deheshi, T. O'Shea, J. Wunder, P. Ferguson, R. L. Randall, R. Turcotte, P. Schneider, P. McKay, M. Bhandari, M. Ghert. The inter-rater reliability of the diagnosis of surgical site infection in the context of a clinical trial. Bone Joint Res 2016;5:347-352. DOI: 10.1302/2046-3758.58.BJR-2016-0036.R1

    Descendants of the first stars: the distinct chemical signature of second generation stars

    Full text link
    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only āˆ¼1%\sim 1\% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.Comment: 18 pages, 20 figures, published in MNRA

    Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Get PDF
    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 Ī¼ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 Ī¼ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 Ī¼ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 Ī¼ m) from edge pixel for the 200 Ī¼ m thick n-on-n sensor. The edge pixel performance of the 100 Ī¼ m thick n-on-p sensors is affected only for the last two pixels (up to 110 Ī¼ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects
    • ā€¦
    corecore