3,508 research outputs found
Observation of multiple sausage oscillations in cool postflare loop
Using simultaneous high spatial (1.3 arc sec) and temporal (5 and 10 s)
resolution H-alpha observations from the 15 cm Solar Tower Telescope at ARIES,
we study the oscillations in the relative intensity to explore the possibility
of sausage oscillations in the chromospheric cool postflare loop. We use
standard wavelet tool, and find the oscillation period of ~ 587 s near the loop
apex, and ~ 349 s near the footpoint. We suggest that the oscillations
represent the fundamental and the first harmonics of fast sausage waves in the
cool postflare loop. Based on the period ratio P1/P2 ~ 1.68, we estimate the
density scale height in the loop as ~ 17 Mm. This value is much higher than the
equilibrium scale height corresponding to H-alpha temperature, which probably
indicates that the cool postflare loop is not in hydrostatic equilibrium.
Seismologically estimated Alfv\'en speed outside the loop is ~ 300-330 km/s.
The observation of multiple oscillations may play a crucial role in
understanding the dynamics of lower solar atmosphere, complementing such
oscillations already reported in the upper solar atmosphere (e.g., hot flaring
loops).Comment: 13 pages, 4 figures, accepted in MNRA
On the relevance of chaos for halo stars in the solar neighbourhood
We show that diffusion due to chaotic mixing in the neighbourhood of the Sun may not be as relevant as previously suggested in erasing phase space signatures of past Galactic accretion events. For this purpose, we analyse solar neighbourhood-like volumes extracted from cosmological simulations that naturally account for chaotic orbital behaviour induced by the strongly triaxial and cuspy shape of the resulting dark matter haloes, among other factors. In the approximation of an analytical static triaxial model, our results show that a large fraction of stellar halo particles in such local volumes have chaos onset times (i.e. the time-scale at which stars commonly associated with chaotic orbits will exhibit their chaotic behaviour) significantly larger than a Hubble time. Furthermore, particles that do present a chaotic behaviour within a Hubble time do not exhibit significant diffusion in phase space.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat
Uncertainties in Galactic Chemical Evolution Models
We use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions, for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of seven basic parameters, which are: the lower and upper mass limit of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number of SNe Ia per solar mass formed, the total stellar mass formed, and the initial mass of gas of the galaxy. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical way by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty, whereas the lower and upper mass limit of the IMF do not play a significant role. On average, the overall uncertainty ranges between 0.1 to 0.5 dex at a given metallicity. The confidence levels can reach values above 1 dex when looking at the evolution of individual elements as a function of galactic age, instead of metallicity
Turbulent Mixing in the Interstellar Medium -- an application for Lagrangian Tracer Particles
We use 3-dimensional numerical simulations of self-gravitating compressible
turbulent gas in combination with Lagrangian tracer particles to investigate
the mixing process of molecular hydrogen (H2) in interstellar clouds. Tracer
particles are used to represent shock-compressed dense gas, which is associated
with H2. We deposit tracer particles in regions of density contrast in excess
of ten times the mean density. Following their trajectories and using
probability distribution functions, we find an upper limit for the mixing
timescale of H2, which is of order 0.3 Myr. This is significantly smaller than
the lifetime of molecular clouds, which demonstrates the importance of the
turbulent mixing of H2 as a preliminary stage to star formation.Comment: 10 pages, 5 figures, conference proceedings "Turbulent Mixing and
Beyond 2007
ASCR/HEP Exascale Requirements Review Report
This draft report summarizes and details the findings, results, and
recommendations derived from the ASCR/HEP Exascale Requirements Review meeting
held in June, 2015. The main conclusions are as follows. 1) Larger, more
capable computing and data facilities are needed to support HEP science goals
in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of
the demand at the 2025 timescale is at least two orders of magnitude -- and in
some cases greater -- than that available currently. 2) The growth rate of data
produced by simulations is overwhelming the current ability, of both facilities
and researchers, to store and analyze it. Additional resources and new
techniques for data analysis are urgently needed. 3) Data rates and volumes
from HEP experimental facilities are also straining the ability to store and
analyze large and complex data volumes. Appropriately configured
leadership-class facilities can play a transformational role in enabling
scientific discovery from these datasets. 4) A close integration of HPC
simulation and data analysis will aid greatly in interpreting results from HEP
experiments. Such an integration will minimize data movement and facilitate
interdependent workflows. 5) Long-range planning between HEP and ASCR will be
required to meet HEP's research needs. To best use ASCR HPC resources the
experimental HEP program needs a) an established long-term plan for access to
ASCR computational and data resources, b) an ability to map workflows onto HPC
resources, c) the ability for ASCR facilities to accommodate workflows run by
collaborations that can have thousands of individual members, d) to transition
codes to the next-generation HPC platforms that will be available at ASCR
facilities, e) to build up and train a workforce capable of developing and
using simulations and analysis to support HEP scientific research on
next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
- …