1,052 research outputs found
The Slowly Formed Guiselin Brush
We study polymer layers formed by irreversible adsorption from a polymer
melt. Our theory describes an experiment which is a ``slow'' version of that
proposed by Guiselin [Europhys. Lett., v. 17 (1992) p. 225] who considered
instantaneously irreversibly adsorbing chains and predicted a universal density
profile of the layer after swelling with solvent to produce the ``Guiselin
brush.'' Here we ask what happens when adsorption is not instantaneous. The
classic example is chemisorption. In this case the brush is formed slowly and
the final structure depends on the experiment's duration, . We find
the swollen layer consists of an inner region of thickness with approximately constant density and an outer region
extending up to height which has the same density decay as for the Guiselin case.Comment: 7 pages, submitted to Europhysics Letter
Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors
As the ground-based gravitational-wave telescopes LIGO, Virgo, and GEO 600
approach the era of first detections, we review the current knowledge of the
coalescence rates and the mass and spin distributions of merging neutron-star
and black-hole binaries. We emphasize the bi-directional connection between
gravitational-wave astronomy and conventional astrophysics. Astrophysical input
will make possible informed decisions about optimal detector configurations and
search techniques. Meanwhile, rate upper limits, detected merger rates, and the
distribution of masses and spins measured by gravitational-wave searches will
constrain astrophysical parameters through comparisons with astrophysical
models. Future developments necessary to the success of gravitational-wave
astronomy are discussed.Comment: Replaced with version accepted by CQG
High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments
Research efforts ranging from studies of solid helium to searches for a
neutron electric dipole moment require isotopically purified helium with a
ratio of 3He to 4He at levels below that which can be measured using
traditional mass spectroscopy techniques. We demonstrate an approach to such a
measurement using accelerator mass spectroscopy, reaching the 10e-14 level of
sensitivity, several orders of magnitude more sensitive than other techniques.
Measurements of 3He/4He in samples relevant to the measurement of the neutron
lifetime indicate the need for substantial corrections. We also argue that
there is a clear path forward to sensitivity increases of at least another
order of magnitude.Comment: 11 pages, 10 figure
Branding the nation: Towards a better understanding
This paper aims to clarify some misunderstanding about nation branding. It examines the origins and interpretations of the concept, and draws a comparison between nation branding and commercial branding. A new definition is offered that emphasises the need to shift from âbrandingâ the nation to nation image management
Dimension in a Radiative Stellar Atmosphere
Dimensional scales are examined in an extended 3+1 Vaidya atmosphere
surrounding a Schwarzschild source. At one scale, the Vaidya null fluid
vanishes and the spacetime contains only a single spherical 2-surface. Both of
these behaviors can be addressed by including higher dimensions in the
spacetime metric.Comment: to appear in Gen. Rel. Gra
Finite time and asymptotic behaviour of the maximal excursion of a random walk
We evaluate the limit distribution of the maximal excursion of a random walk
in any dimension for homogeneous environments and for self-similar supports
under the assumption of spherical symmetry. This distribution is obtained in
closed form and is an approximation of the exact distribution comparable to
that obtained by real space renormalization methods. Then we focus on the early
time behaviour of this quantity. The instantaneous diffusion exponent
exhibits a systematic overshooting of the long time exponent. Exact results are
obtained in one dimension up to third order in . In two dimensions,
on a regular lattice and on the Sierpi\'nski gasket we find numerically that
the analytic scaling holds.Comment: 9 pages, 4 figures, accepted J. Phys.
A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)
A new boron-coated CCD camera is described for direct detection of ultracold
neutrons (UCN) through the capture reactions B
(n,0)Li (6%) and B(n,1)Li (94%).
The experiments, which extend earlier works using a boron-coated ZnS:Ag
scintillator, are based on direct detections of the neutron-capture byproducts
in silicon. The high position resolution, energy resolution and particle ID
performance of a scientific CCD allows for observation and identification of
all the byproducts , Li and (electron recoils). A
signal-to-noise improvement on the order of 10 over the indirect method has
been achieved. Sub-pixel position resolution of a few microns is demonstrated.
The technology can also be used to build UCN detectors with an area on the
order of 1 m. The combination of micrometer scale spatial resolution, few
electrons ionization thresholds and large area paves the way to new research
avenues including quantum physics of UCN and high-resolution neutron imaging
and spectroscopy.Comment: 10 pages, 8 figure
- âŠ