60 research outputs found

    NASA Soil Moisture Active Passive Mission Status and Science Highlights

    Get PDF
    The Soil Moisture Active Passive (SMAP) observatory was launched January 31, 2015, and its L-band radiometer and radar instruments became operational during April 2015. This paper provides a summary of the quality assessment of its baseline soil moisture and freeze/thaw products as well as an overview of new products. The first new product explores the Backus Gilbert optimum interpolation based on the oversampling characteristics of the SMAP radiometer. The second one investigates the disaggregation of the SMAP radiometer data using the European Space Agency's Sentinel-1 C-band synthetic aperture radar (SAR) data to obtain soil moisture products at about 1 to 3 km resolution. In addition, SMAPs L-band data have been found useful for many scientific applications, including depictions of water cycles, vegetation opacity, ocean surface salinity and hurricane ocean surface wind mapping. Highlights of these new applications will be provided.The SMAP soil moisture, freeze/taw state and SSSprovide a synergistic view of water cycle. For example, Fig.7 illustrates the transition of freeze/thaw state, change of soilmoisture near the pole and SSS in the Arctic Ocean fromApril to October in 2015 and 2016. In April, most parts ofAlaska, Canada, and Siberia remained frozen. Melt onsetstarted in May. Alaska, Canada, and a big part of Siberia havebecome thawed at the end of May; some freshwater dischargecould be found near the mouth of Mackenzie in 2016, but notin 2015. The soil moisture appeared to be higher in the Oband Yenisei river basins in Siberia in 2015. As a result,freshwater discharge was more widespread in the Kara Seanear the mouths of both rivers in June 2015 than in 2016. TheNorth America and Siberia have become completely thawedin July. After June, the freshwater discharge from other riversinto the Arctic, indicated by blue, also became visible. Thefreeze-up started in September and the high latitude regionsin North America and Eurasia became frozen. Comparing thespread of freshwater in August 2015 and 2016 suggests thatthere was more discharge from Ob and Yenisei in 2015,which appeared to correspond to a higher soil moisturecontent in the Ob and Yenisei basins. In contrast, Mackenzieappeared to have more discharge in September 2016

    The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    Get PDF
    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame

    Association of thirty-year alcohol consumption typologies and fatty liver: Findings from a large population cohort study.

    Get PDF
    OBJECTIVE: To evaluate the longitudinal relationship between repeated measures of alcohol consumption and risk of developing fatty liver. PATIENTS AND METHODS: This study includes 5407 men and women from a British population-based cohort, the Whitehall II study of civil servants, who self-reported alcohol consumption by questionnaire over approximately 30 years (1985-1989 through to 2012-2013). Drinking typologies during midlife were linked to measures of fatty liver (the fatty liver index, FLI) when participants were in older age (age range 60-84 years) and adjusted for age, socio-economic position, ethnicity, and smoking. RESULTS: Those who consistently drank heavily had two-fold higher odds of increased FLI compared to stable low-risk moderate drinkers after adjustment for covariates (men: OR = 2.04, 95%CI = 1.53-2.74; women: OR = 2.24, 95%CI = 1.08-4.55). Former drinkers also had an increased FLI compared to low-risk drinkers (men: OR = 2.09, 95%CI = 1.55-2.85; women: OR = 1.68, 95%CI = 1.08-2.67). There were non-significant differences in FLI between non-drinkers and stable low-risk drinkers. Among women, there was no increased risk for current heavy drinkers in cross sectional analyses. CONCLUSION: Drinking habits among adults during midlife affect the development of fatty liver, and sustained heavy drinking is associated with an increased FLI compared to stable low-risk drinkers. After the exclusion of former drinkers, there was no difference between non-drinkers and low-risk drinkers, which does not support a protective effect on fatty liver from low-risk drinking. Cross-sectional analyses among women did not find an increased risk of heavy drinking compared to low-risk drinkers, thus highlighting the need to take a longitudinal approach.AB, DON and SB were supported by grants from the European Research Council (ERC-StG-2012- 309337_AlcoholLifecourse, PI: Britton, http://www.ucl.ac.uk/alcohol-lifecourse) and UK Medical Research Council/Alcohol Research UK (MR/M006638/1). The UK Medical Research Council (MR/K013351/1; G0902037), British Heart Foundation (RG/13/2/30098), and the US National Institutes of Health (R01HL36310, R01AG013196) have supported collection of data in the Whitehall II Study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Sustained heavy drinking over 25 years is associated with increased N-terminal-pro-B-type natriuretic peptides in early old age: Population-based cohort study.

    Get PDF
    UNLABELLED: Heavy alcohol consumption is associated with an increased risk of heart failure. We sought to investigate whether levels of NT-proBNP differ by alcohol consumption profiles, both current drinking as well as cumulative exposure to drinking over several decades in a general population sample. METHODS: Data on 2054 participants (49% male) were taken from the UK Medical Research Council National Survey for Health and Development, a longitudinal cohort study based on a nationally representative sample of births in 1946. Categories of long-term alcohol consumption were created based on consumption over 25 years of observations and compared with levels of NT-proBNP measured at mean age 63. RESULTS: We found that those who drank heavily (both currently and long-term) had higher levels of NT-proBNP than moderate drinkers, after adjusting for major confounders (age, sex, socio-economic position and smoking). As NT-proBNP has attracted attention as a biomarker for heart failure, this suggests a critical pathway through which heavy drinking may increase risk of this cardiovascular disease. When we looked at heavy drinkers who varied their intake over the decades, it was only the recently heavy group that had higher levels of NT-proBNP. Further work is needed to demonstrate whether effects are reversible upon cessation of heavy drinking, but this finding highlights the need to have repeated data to unpack dynamics over time. CONCLUSION: Our findings suggest heavy drinkers could be screened for NT-proBNP levels in order to identify those at high risk earlier in the clinical stages of heart failure and targeted for risk reduction strategies

    Simultaenous Retrieval of Surface Roughness Parameters from Combined Active-Passive SMAP Observations

    Get PDF
    Soil roughness strongly influences processes like erosion, infiltration, moisture and evaporation of soils as well as growth of agricultural plants. An approach to soil roughness based on active-passive microwave covariation is proposed in order to simultaneously retrieve the vertical RMS height (s) and horizontal correlation length (l) of soil surfaces from simultaneously measured radar and radiometer microwave signatures. The approach is based on a retrieval algorithm for active-passive covariation including the improved Integral Equation Method (I2EM). The algorithm is tested with the global active-passive microwave observations of the SMAP mission. The developed roughness retrieval algorithm shows independence of permittivity for > 10 [-] due to the covariation formalism. Results reveal that s and l can be estimated simultaneously by the proposed approach since surface patterns of non-vegetated areas become evident on global scale. In regions with sandy deserts, like the Sahara or the outback in Australia, determined and confirm rather smooth to semi-rough surface roughness patterns with small vertical RMS heights and corresponding higher horizontal correlation lengths

    Association of alcohol consumption with morbidity and mortality in patients with cardiovascular disease: original data and meta-analysis of 48,423 men and women.

    Get PDF
    BackgroundLight-to-moderate alcohol consumption has been reported to be cardio-protective among apparently healthy individuals; however, it is unclear whether this association is also present in those with disease. To examine the association between alcohol consumption and prognosis in individuals with pre-existing cardiovascular disease (CVD), we conducted a series of meta-analyses of new findings from three large-scale cohorts and existing published studies.MethodsWe assessed alcohol consumption in relation to all-cause mortality, cardiovascular mortality, and subsequent cardiovascular events via de novo analyses of 14,386 patients with a previous myocardial infarction, angina, or stroke in the UK Biobank Study (median follow-up 8.7 years, interquartile range [IQR] 8.0-9.5), involving 1640 deaths and 2950 subsequent events, and 2802 patients and 1257 deaths in 15 waves of the Health Survey for England 1994-2008 and three waves of the Scottish Health Survey 1995, 1998, and 2003 (median follow-up 9.5 years, IQR 5.7-13.0). This was augmented with findings from 12 published studies identified through a systematic review, providing data on 31,235 patients, 5095 deaths, and 1414 subsequent events. To determine the best-fitting dose-response association between alcohol and each outcome in the combined sample of 48,423 patients, models were constructed using fractional polynomial regression, adjusting at least for age, sex, and smoking status.ResultsAlcohol consumption was associated with all assessed outcomes in a J-shaped manner relative to current non-drinkers, with a risk reduction that peaked at 7 g/day (relative risk 0.79, 95% confidence interval 0.73-0.85) for all-cause mortality, 8 g/day (0.73, 0.64-0.83) for cardiovascular mortality and 6 g/day (0.50, 0.26-0.96) for cardiovascular events, and remained significant up to 62, 50, and 15 g/day, respectively. No statistically significant elevated risks were found at higher levels of drinking. In the few studies that excluded former drinkers from the non-drinking reference group, reductions in risk among light-to-moderate drinkers were attenuated.ConclusionsFor secondary prevention of CVD, current drinkers may not need to stop drinking. However, they should be informed that the lowest risk of mortality and having another cardiovascular event is likely to be associated with lower levels of drinking, that is up to approximately 105g (or equivalent to 13 UK units, with one unit equal to half a pint of beer/lager/cider, half a glass of wine, or one measure of spirits) a week

    The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    Get PDF
    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors applicable to soil moisture measurement, such as Aquarius, SAO COM, and ALOS-2. The algorithms and data products for SMAP are being developed in the SMAP Science Data System (SDS) Testbed. The algorithms are developed and evaluated in the SDS Testbed using simulated SMAP observations as well as observational data from current airborne and spaceborne L-band sensors including SMOS. The SMAP project is developing a Calibration and Validation (Cal/Val) Plan that is designed to support algorithm development (pre-launch) and data product validation (post-launch). A key component of the Cal/Val Plan is the identification, characterization, and instrumentation of sites that can be used to calibrate and validate the sensor data (Level I) and derived geophysical products (Level 2 and higher). In this presentation we report on the development status of the SMAP data product algorithms, and the planning and implementation of the SMAP Cal/Val program. Several components of the SMAP algorithm development and Cal/Val plans have commonality with those of SMOS, and for this reason there are shared activities and resources that can be utilized between the missions, including in situ networks, ancillary data sets, and long-term monitoring sites

    Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Get PDF
    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented

    Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    Get PDF
    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science

    Physics-Based Retrieval of Surface Roughness Parameters for Bare Soils from Combined Active-Passive Microwave Signatures

    Get PDF
    In the past the effect of soil roughness was often considered secondary within the determination of soil moisture from remote sensing data. Several studies showed that accurate determination of soil roughness leads to an improved estimation of soil moisture. Two default parameters to describe the surface roughness are the standard deviation of the surface height variation and the surface correlation length with its corresponding autocorrelation function. Both parameters (,) affect the emissivity measured by radiometers as well as the backscattering observed by radars. In this study, we develop a physics-based approach to retrieve and by combining both microwave signals based on active-passive microwave covariation. To test the approach, containing a forward model and a retrieval algorithm, we used active/passive microwave data measured with the ComRAD truck-based SMAP simulator at L-band. Results and validations with corresponding field measurements on ground show that and can be estimated simultaneously when using this approach. The physics-based retrieval algorithm works robustly for two investigated test fields having an RMS-Error of 0.68 cm and 0.69 cm between the microwave-based and field-measured -values, and of 3.13 cm and 3.04 cm for -values. The first validation of the results reveals that the influence of the autocorrelation function, needed within the retrieval, is distinct
    • …
    corecore