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Abstract— A robust physics-based combined radar-radiometer, 

or Active-Passive, surface soil moisture and roughness estimation 

methodology is presented. Soil moisture and roughness retrieval is 

performed via optimization, i.e., minimization, of a joint objective 

function which constrains similar resolution radar and radiometer 

observations simultaneously. A data-driven and noise-dependent 

regularization term has also been developed to automatically 

regularize and balance corresponding radar and radiometer 

contributions to achieve optimal soil moisture retrievals. It is 

shown that in order to compensate for measurement and 

observation noise, as well as forward model inaccuracies, in 

combined radar-radiometer estimation surface roughness can be 

considered a free parameter. Extensive Monte-Carlo numerical 

simulations and assessment using field data have been performed 

to both evaluate the algorithm’s performance and to demonstrate 

soil moisture estimation. Unbiased root mean squared errors 

(RMSE) range from 0.18 to 0.03 cm3/cm3 for two different land 

cover types of corn and soybean. In summary, in the context of soil 

moisture retrieval, the importance of consistent forward emission 

and scattering development is discussed and presented.   

 
Index Terms—Soil Moisture, Radar, Radiometer, Soil Moisture 

Active-Passive (SMAP)   

I. INTRODUCTION 

nowledge of the amount of surface soil moisture, as a  

driver behind many of Earth’s hydrological and 

hydroclimatological phenomena, is essential to the science 

community. Soil moisture dynamics have profound 

implications on terrestrial water, energy and carbon cycles, as 

well as evaporation and transpiration at the land-atmosphere 

boundary. Over continental and regional scales, soil moisture 

variations also affect weather and climate evolutions. 

Furthermore, the performance and prediction of current 

Numerical Weather Prediction (NWP) and global climate 

models will significantly improve with accurate knowledge of 

soil moisture, since it is a key initial state variable. In addition, 

improved flood prediction, drought monitoring, and enhanced 

agricultural productivity are all made possible with better 

understanding of soil moisture distributions. 

Using current soil moisture measurement technologies, 

obtaining high resolution and high accuracy global soil 
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moisture predictions meeting stringent science requirements are 

only possible through merging the strengths of active radar, 

especially Synthetic Aperture Radar (SAR), with passive 

radiometer microwave remote sensing techniques. The NASA 

Soil Moisture Active Passive (SMAP) mission [1], launched in 

January 2015, sought to address such evolving science 

requirements and constraints. Prior to the mission’s radar 

ceasing operation, delivering unprecedented high-resolution 9 

km global surface soil moisture predictions with a 3-day 

temporal resolution and volumetric accuracy of 0.04 cm3/cm3, 

or better, was the primary focus of SMAP.  

Development of robust Combined Active-Passive (C-AP) 

retrieval algorithms, applicable to SMAP and other joint radar-

radiometer combinations, is of keen interest. In particular, 

methods that effectively capture the complimentary nature of 

radar backscatter (𝜎0) and radiometer brightness temperature 

(TB) with respect to variations in land surface conditions for a 

variety of soil moisture and vegetation regimes have the 

potential to produce more accurate soil moisture estimates 

compared to conventional methodologies.   

Approximately 2.5 months of global high resolution L-

band SMAP radar data were collected prior to instrument 

failure in July 2015. The existing data are suitable for C-AP 

algorithm development as well as to further our understanding 

of the interrelationships between radar backscatter and 

radiometer emission. Moreover, with an adaptive and robust C-

AP algorithm, cross-platform soil moisture estimation may be 

possible; for example, combining SMAP coarse resolution 

brightness temperature observations with the European Space 

Agency’s (ESA) Sentinel-1 mission [2]  high resolution C-band 

SAR data are currently under development.  

There is a long tradition of soil moisture retrieval using 

microwave remote sensing; many works have addressed soil 

moisture observation and estimation from radar-only or 

radiometer-only perspectives [3][4][5]. Radar and radiometer 

observations in these studies have shown noticeable sensitivity 

to changes in surface soil moisture as well as vegetation 

conditions, followed by attempts to retrieve soil moisture using 

either radar or radiometer observations. More recently, and 
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within the SMAP mission context, various regression, time-

series, and change detection methods have been proposed to 

combine radar and radiometer observations to estimate soil 

moisture [6][7][8][9].  

The focus of this work is on physics-based and forward-

model-centric soil moisture retrieval methods. In comparison to 

localized regression methods or other empirical approaches 

[10][11][12], physics-based methods are more broadly 

applicable, but at times require many model parameters some 

of which are impractical to measure. The common retrieval 

target amongst most existing methods is only surface soil 

moisture. An assumption is typically made about the value of 

all other model parameters, which can either be derived or 

inferred from ancillary data sources or localized field 

campaigns. In the case of SMAP, for example, ancillary 

knowledge of vegetation water content (VWC) is derived from 

climatological studies based on Moderate Resolution Imaging 

Spectroradiometer (MODIS) observations.  

In addition to soil moisture and vegetation, surface 

roughness greatly affects measured radar backscatter and 

radiometer TB. Typically, both backscatter and emission 

increase with increasing roughness, but to different levels. 

Furthermore, knowledge of surface roughness is very limited 

and difficult to measure at local, regional, or global scales. 

Typically two approaches are taken to overcome this issue: (a) 

assuming a land cover dependent value for surface roughness 

statistics such as in [13][14] for radar-only methods or in [15] 

for radiometer-only methods. (b) time-series approaches, such 

that within a short window of time, the amount of surface 

roughness is assumed constant and a two-step optimization is 

performed, first for roughness then for soil moisture [16].  

More information can be inferred about a given scene from 

simultaneous use of radar backscatter and radiometer TB than 

each of them alone. Nominally, radar backscatter observations 

include two co-polarized (HH and VV) channels, and 

corresponding radiometer observations include two orthogonal 

linear polarizations of H and V. Radiometer emission and radar 

scattering exhibit different and unique sensitivities to the 

underlying land surface conditions, including soil moisture and 

surface roughness, and collectively convey synergistic but 

independent information from the scene under observation. 

Therefore, within a joint radar-radiometer estimation 

framework, by taking advantage of this added mutual 

information between backscatter and emission, it is possible to 

retrieve additional unknowns. For example, both soil moisture 

and surface roughness can be assumed to be unknown and 

retrieved from the joint data set. 

Validation of retrieved surface roughness values, however, 

are generally not possible; thus within the retrieval framework 

they can be considered as free parameters providing more 

flexibility for accurate retrieval of soil moisture.  

In Section II, a self-regularizing combined active-passive 

(C-AP) soil moisture estimation framework is presented and 

effects of forward emission and scattering model ambiguities 

are discussed. Multi-parameter (soil moisture and roughness) 

estimation for various measurement and observation noise 

scenarios is outlined in Section III and applied to field data in 

Section IV highlighting improved soil moisture estimation 

using active and passive observations with the same, or similar, 

spatial resolutions.  

It is important to note that the context of this work focuses 

on building the foundations of a generalized physics-based and 

model-driven active-passive retrieval methodology. Therefore, 

the natural progression is to initially focus on the situation 

where radar and radiometer measurements are at the same 

resolution, i.e., tower-mounted or airborne observations. The 

multi-resolution scenario, such as that of SMAP, where radar 

and radiometer observations are at different spatial resolutions, 

is the focus of other on-going, but closely related work and are 

not presented here. 

II. MULTI-PARAMETER ESTIMATION 

A. Radar-Radiometer Cost Function Definition 

Parameter estimation is performed via minimization of a joint 

Active and Passive cost function, or objective function, denoted 

as 𝐿𝑎𝑝(�̅�). Same-resolution radar backscatter and radiometer 

TB are constrained to each other within the cost function, which 

generically is written as  

 𝐿𝑎𝑝(�̅�) = 𝐿𝑎(�̅�) + 𝛾 ∙  𝐿𝑝(�̅�). (1) 

𝐿𝑎(�̅�)  is the radar, or active, contribution, and 𝐿𝑝(�̅�)  is the 

radiometer, or passive, contribution. The vector �̅� is the vector 

of unknowns. For the analysis discussed in this section, the 

unknowns are soil surface permittivity (dielectric constant 𝜖𝑟) 

and RMS height s [m] scaled by the wavelength k, i.e.,  �̅� =
[𝜖𝑟 , 𝑘 ∙ 𝑠] . Note that soil permittivity is a surrogate for soil 

moisture, and for algorithm development and testing they can 

be interchanged; similarly for surface roughness s and the 

scaled, or electromagnetic, roughness, 𝑘 ∙ 𝑠. 

The individual definitions of 𝐿𝑎(�̅�) and 𝐿𝑝(�̅�) are written as  

 

𝐿𝑎(�̅�) =  ∑ |
𝜎𝑝𝑝

0 − 𝜎𝑝𝑝
0 (�̅�)

𝑘𝑝

|

2

𝑝𝑝=𝑣𝑣,ℎℎ

 (2.a) 

 

𝐿𝑝(�̅�) =  ∑ |
𝑇𝐵𝑝 − 𝑇𝐵𝑝(�̅�)

Δ𝑇
|

2

𝑝=𝑉,𝐻

. (2.b) 

Same-resolution active and passive measurements are denoted 

by 𝜎𝑝𝑝
0  and 𝑇𝐵𝑝 , respectively, which include all co-polarized 

measurements (HH, VV for radar and H- and V-pol for 

radiometer). The quantities 𝜎𝑝𝑝
0 (�̅�)  and 𝑇𝐵𝑝(�̅�)  are the 

respective scattering and emission forward models driven by 

the unknown vector �̅�. Other model specific parameters, such 

as vegetation water content (VWC), surface and canopy 

physical temperatures, etc., are assumed known and not shown 

for compactness of form.  

Observation noise effects as well as electromagnetic 

scattering and emission model deficiencies can be detrimental 

to the ability to properly estimate surface soil moisture, and 

therefore must be properly accounted for within the joint 

estimation framework.  Here, noise terms are denoted as the 
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expected measurement noise standard deviations which are 𝑘𝑝 

for radar and Δ𝑇 for radiometer.  

Combining 𝐿𝑎(�̅�) and 𝐿𝑝(�̅�) from Eqs.2, and rearranging 

the noise terms, yields 

𝐿𝑎𝑝(�̅�) =  ∑ |
𝜎𝑝𝑝

0 − 𝜎𝑝𝑝
0 (�̅�)

𝑘𝑝

|

2

𝑝𝑝=𝑣𝑣,ℎℎ

+ 𝛾 ∑ |
𝑇𝐵𝑝 − 𝑇𝐵𝑝(�̅�)

Δ𝑇
|

2

𝑝=𝑉,𝐻

 

(3.a) 

𝐿𝑎𝑝(�̅�) =
1

𝑘𝑝
2

∑ |𝜎𝑝𝑝
0 − 𝜎𝑝𝑝

0 (�̅�)|
2

  

𝑝𝑝=𝑣𝑣,ℎℎ

+ 𝛾
1

Δ𝑇2
 ∑ |𝑇𝐵𝑝 − 𝑇𝐵𝑝(�̅�)|

2

𝑝=𝑉,𝐻

 

(3.b) 

𝑘𝑝
2 ⋅ 𝐿𝑎𝑝(�̅�) =  ∑ |𝜎𝑝𝑝

0 − 𝜎𝑝𝑝
0 (�̅�)|

2

𝑝𝑝=𝑣𝑣,ℎℎ

+ 𝛾 (
𝑘𝑝

Δ𝑇
)

2

∙  ∑ |𝑇𝐵𝑝 − 𝑇𝐵𝑝(�̅�)|
2

𝑝=𝑉,𝐻

 

(3.c) 

𝐿𝑎𝑝(�̅�) =  ∑ |𝜎𝑝𝑝
0 − 𝜎𝑝𝑝

0 (�̅�)|
2

𝑝𝑝=𝑣𝑣,ℎℎ

+ 𝛼

∙  ∑ |𝑇𝐵𝑝 − 𝑇𝐵𝑝(�̅�)|
2

𝑝=𝑉,𝐻

 
(3.d) 

Even though individual H- or V-pol radar and radiometer 

channels may incur different amounts of error, it is assumed that 

on average and over multiple observations the error standard 

deviations for each channel are the same. Therefore, 𝑘𝑝 and Δ𝑇 

can be factored out for each summation and regrouped. 

Furthermore, in Eqs. 3.c, the additional 𝑘𝑝
2  only scales 𝐿𝑎𝑝(�̅�) 

and can be ignored in the optimization algorithm. This is due to 

the fact that within any optimization scheme, the goal is to 

minimize objective functions, and scaling them by a positive 

scalar values does not change the location of their minima. The 

form of 𝐿𝑎𝑝(�̅�) as presented in Eqs.3.d captures both radar and 

radiometer contributions and allows for proper regularization as 

a function of measurements noise. 

The new factor 𝛼 is given as 𝛾 ∙ (
𝑘𝑝

Δ𝑇
)

2

 and is defined as the 

square of the ratio of radar to radiometer measurement noise 

standard deviations multiplied by an additional regularization 

term 𝛾. The factor 𝛾 typically ranges from 10-3 to 100 for fine 

tuning. Selection of an optimum land-cover dependent 𝛼 

parameter will be discussed in detail in later sections.  

The effectiveness of the cost function to estimate soil 

moisture, in the form written in Eq. 3.d, can now be explained: 

radar and radiometer measurements are tied and constrained to 

each other but their relative weights are modified based on 

measurement noise. For added computational stability and 

flexibility an additional regularization term is also included. 

Initially, assuming 𝛾 to be one (𝛾  = 1), if the ratio of  
𝑘𝑝

Δ𝑇
  

increases, within 𝐿𝑎𝑝(�̅�) more weight is given to radiometer 

data. An increase in this ratio is indicative of reduced 

radiometer noise, or increased radar noise. Conversely, if the 
𝑘𝑝

Δ𝑇
 

ratio decreases, e.g., reduced radar noise or increased 

radiometer noise, less weight is given to the radiometer data in 

𝐿𝑎𝑝(�̅�) . Furthermore, by varying 𝛾 , as an additional 

regularization term, optimum balance between 𝜎0  and TB 

contributions can be obtained, which results in best retrievals.  

Table 1 shows various noise ratio combinations and the 

resulting minimum and maximum values of 𝛼 based on varying 

𝛾 ∈ [10−3, 100]. Values of 𝑘𝑝 are considered to be as low as 

0.5 dB and as high as 0.7 dB [16]. The values of Δ𝑇 range from 

1.5 K to 3 K. These parameters are also used in the numerical 

simulations in Section III to demonstrate the performance of 

this method when retrieving soil moisture.  

 
TABLE 1 

 ACTIVE-PASSIVE NOISE STANDARD DEVIATION RATIOS 

AND REGULARIZATION PARAMETER RANGES 

Parameter 
Low- 

Low* 

High- 

High 

Low- 

High 

High-

Low 

(𝒌𝒑/𝚫𝑻)
𝟐
 0.11 0.05 0.03 0.22 

𝜶 = 𝜸 (
𝒌𝒑

𝚫𝑻
)

𝟐

 
𝜶𝒎𝒊𝒏 < 2.2 ∙ 10−4 

𝜶𝒎𝒂𝒙 11 5 3 22 

* Radar noise standard deviation is mentioned first, then radiometer, 

i.e. radar/radiometer noise. 

 

Variations of 𝛼 yield combinations of measurements ranging 

from radar-only to radiometer-only. Examining the value of 

(
𝑘𝑝

Δ𝑇
)

2

with respect to changes in the expected radiometer noise 

Δ𝑇 is insightful: 

 For the high radiometer noise scenarios, High-High and Low-

High, such that Δ𝑇~3𝐾 , the ratio (
𝑘𝑝

Δ𝑇
)

2

is small, 0.05  

[
𝑑𝐵

𝐾
]

2

and 0.03 [
𝑑𝐵

𝐾
]

2

, thus automatically reducing the 

contribution of radiometer measurements and 𝐿𝑝(�̅�). Under 

these scenarios, the total value of the cost function is 

dominated mostly by radar measurements.  

 When Δ𝑇 is lower, such as in the Low-Low and High-Low 

scenarios, the value of (
𝑘𝑝

Δ𝑇
)

2

 is larger than before, by factor 

of 3-5, thus naturally adding more weight to radiometer data 

compared to the previous scenario.  

This self-regularizing feature of the cost function greatly 

improves its robustness with respect to measurement noise 

when compared to previous methods such as [9] where no 

distinction was made between the regularization term 𝛾 and the 

noise terms. Furthermore, in the context of SMAP, where TB 

measurements at the radar resolution do not exist and are 

produced via a disaggregation scheme [8], Δ𝑇  can be 

interpreted as the uncertainty associated with the disaggregation 

process and soil moisture estimation performed at the radar 

resolution.  

B. Cost Function Behavior Analysis  

In forward model-centric retrieval methods, understanding 

both model and objective function behavior is key. 
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Forward scattering and emission models can be, and are in 

this case, non-unique with respect to model parameters and 

have ambiguities. Specifically, model predictions and outputs 

based on different combinations of input parameters, i.e., 

different combinations of soil moisture, roughness, and VWC, 

can yield similar backscatter or TB output values. This feature 

greatly complicates the inversion process, especially in the 

presence of measurement noise. Fig. 1 schematically shows this 

issue. A single set of model parameters 𝑋1 produces a single 

observed radar backscatter or radiometer emission value , 𝐷 . 

Another set of parameters 𝑋2 can also generate the same value. 

Ambiguities further arise in the inverse process where, at first 

glance, it is unclear whether 𝐷  is due to 𝑋1 , 𝑋2  or in the 

presence of noise, due to a range of possible parameters, shown 

as the grey shaded area in Fig.1.   

In the case of estimating multiple unknown parameters 

instead of just one, model ambiguities are more severe limiting 

factors affecting the retrieval performance. In joint radar-

radiometer retrievals, such limitations can be mitigated, or even 

eliminated, by proper utilization of the complimentary 

information provided by 𝜎0 and TB measurements.   

To highlight the effects of model ambiguity on inversion, and 

to understand how simultaneously using radar backscatter and 

radiometer emission measurements can improve soil moisture 

retrievals, plots of the cost function hyper-planes are examined 

in Figs. 2, 3 , and 4. For simplification, the hyper-planes are 

thresholded such that only model predictions within a certain 

range of true and noise-free test points, 𝐷𝑡𝑟𝑢𝑒 , are shown. In 

other words, the range of �̅� which makes |𝐷𝑡𝑟𝑢𝑒 − 𝐹𝑀(�̅�)|2 ≤
𝑘𝑝

2  (or Δ𝑇2  in the case of TB) is plotted. The term 𝐹𝑀(�̅�) is 

either the radar backscatter model or emission model; 𝑘𝑝 and  

Δ𝑇  are the expected measurement noise standard deviations, 

which are squared for consistency in units. They are also taken 

as the threshold values of the hyper-planes.  

Consistent with SMAP baseline radar-only algorithms 

(L2SM_A), land cover specific radar backscatter datacubes 

[17][18] are used. These datacubes are pre-computed 3-

dimentioal lookup tables generated from analytical scattering 

models [19] [20]. Co- and cross-pol radar backscatter 

predictions can be extracted from these datacubes as a function 

of surface permittivity, surface roughness, and VWC. 

 

 

Fig. 2. Radar-only cost function hyper-plane search space. Shaded regions 

indicate|𝜎𝑡𝑟𝑢𝑒
0 − 𝜎0(�̅�)|2 ≤ 𝑘𝑝

2; 𝑘𝑝 ∈ {0.5, 1, 1.5} 𝑑𝐵. Red square is the true 

test point. Top panel VV-only; middle panel HH-only; bottom panel VV and 

HH 

 

Similarly, the widely accepted tau-omega emission model, or 

zeroth order solution to the Radiative Transfer equation [4], is 

used to predict measured brightness temperature as a function 

of surface permittivity, roughness, VWC, and physical 

temperature.  It is important to note that both models share the 

same key parameter kernels, i.e., ( 𝜖𝑟 , 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, VWC ), 

although the underlying theoretical development of these 

models is significantly different. Based on the datacubes’s axis 

discretization, the space of all possible �̅� = [𝜖𝑟 , 𝑘 ∙ 𝑠] values is 

a 280 × 30 matrix such that 𝜖𝑟, or soil permittivity, ranges from 

3 to 30 with step-length of 0.0968, and root mean squared 

surface roughness s, scaled by the wavenumber 𝑘, is limited 

between 0 and 0.3 with a step-length of 0.0103. 

In Fig. 2, an example hyper-plane for the radar-only cost 

function, 𝐿𝑎(�̅�), can be seen. The example here is specific to 

corn with VWC of 2.5 kg/m2. Variations with respect to soil 

permittivity and surface roughness are initially considered. The 

VV (top-panel) and HH (middle-panel) responses have been 

separated since scattering polarization behaviors are different. 

The shaded regions in Fig. 2 indicate the space of all possible 

model parameters which produce a model prediction within 𝑘𝑝
2 

of the actual measurement. As 𝑘𝑝 is gradually reduced from 1.5 

dB to 0.5 dB, the effective model parameter search space is 

reduced, thus showing a gradual convergence towards the true 

set of model parameters �̅�𝑡𝑟𝑢𝑒 (Red-squares in Fig. 2).   

 

 
Fig. 1: Schematic of parameter and data space non-uniqueness. Both sets of 

model parameters 𝑋1and 𝑋2 can generate 𝐷. Within the inversion process, 

especially in the presence of noise, it is unclear what set of parameters 

caused 𝐷, shown as the shaded region.  
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Observe that due to the rather ambiguous model response a 

large range of soil permittivity and roughness combinations are 

acceptable, from very dry and rough surfaces to wet smooth 

surfaces. When VV and HH radar backscatter coefficients are 

simultaneously included, the parameter search space and 

therefore the ambiguity are effectively reduced (from 25% to 

3.5% of the entire range).  The range of possible soil 

permittivity values, however, is still very large (10 ≤ 𝜖𝑟 < 26). 

Therefore, it is initially unclear which set of (𝜖𝑟 , 𝑘 ∙ 𝑠) 

parameter values to select. Consequently, attempting to 

estimate soil moisture using a single snapshot set of co-pol 

radar measurements is prone to higher errors. 

Figure 3 is analogous to Fig. 2, but for the radiometer case. 

Again, a large possible search space exits, which spans a wider 

range of surface roughness compared to soil permittivity. 

Unlike the radar scenario, the space of possible solutions is 

limited to a smaller range of soil permittivity values (12.5 ≤
 𝜖𝑟 ≤ 17.5) Inclusion of both TBV and TBH, similar to the 

radar scenario, reduces the effective search space significantly 

and the span of possible soil permittivity values is much less 

than for the case of single polarization TB (12.5 ≤ 𝜖𝑟 ≤ 25).  

As seen in Fig. 4, when 𝐿𝑎(�̅�)  and 𝐿𝑝(�̅�)  along with an 

appropriate regularization term 𝛼 (𝛾 = 1), are simultaneously 

evaluated the parameter search space is significantly reduced. 

The resulting space is essentially a weighted overlap between 

radar and radiometer contributions, as indicated by the yellow 

region in Fig. 4. Since potential target parameters are limited to 

a smaller region around the true point, more accurate soil 

moisture retrievals are therefore possible. Furthermore, by 

varying the contributions of passive data to 𝐿𝑎𝑝(�̅�) , via 

changing 𝛼, an optimum weight between 𝐿𝑎(�̅�) and 𝐿𝑝(�̅�) can 

be determined, which further improves the final soil moisture 

estimates.  

In the presence of noise, however, the true set of model 

parameters may fall outside the search space. Under this 

condition, a set of parameters �̅�𝑜𝑝𝑡  that minimize |𝐷 −

𝐹𝑀(�̅�)|2 must be determined. In Section III, the effects of 

varying the regularization term 𝛾 for various noise scenarios is 

discussed in detail.   

Variations in VWC also increases or decreases the effective 

model ambiguity and the ability to predict soil moisture. In 

general, as VWC increases, soil moisture estimation, both from 

a radar-only and radiometer-only perspective, becomes more 

erroneous since scattering or emission contributions due to the 

vegetation gradually dominate the surface response. This 

feature also affects combined radar-radiometer retrieval 

approaches. To demonstrate this behavior, the parameter search 

space based on 𝐿𝑎(�̅�) + 𝛼 ∙ 𝐿𝑝(�̅�) ≤ 2 ∙ 𝑘𝑝
2  for different soil 

permittivity, roughness and VWC conditions is evaluated and 

shown in Fig. 5. Here 𝑘𝑝 =0.5-1 dB and Δ𝑇=1.5-3K.  For a 

given set of 𝜖𝑟 and 𝑘 ∙ 𝑠 values, as VWC increases, in general, 

the parameter search space also expands. However, unlike 

radar-only or radiometer-only scenarios in Fig. 2 and 3, the span 

of possible model parameters is much smaller.  

 

 

 

Fig. 3 Radiometer-only cost function hyper-plane search space. Shaded regions 

indicate |𝑇𝐵𝑡𝑟𝑢𝑒 − 𝑇𝐵(�̅�)|2 ≤ Δ𝑇2; Δ𝑇 ∈ {1.5, 2,3} K. Red square is the true test 

point. Top panel TBV-only; middle panel TBH-only; bottom panel TBV and 

TBH. 

Fig. 4 Overlay of Radar-only (𝐿𝑎(�̅�) ≤ 𝑘𝑝
2; blue shades) and Radiometer-

only (𝐿𝑝(�̅�) ≤ Δ𝑇2; green shades) parameter search spaces.  Combined 

Radar-Radiometer region is the overlap region (yellow shades). The true 

point is the red square. 
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Fig. 5: Combined Radar-Radiometer search spaces gradually increase with increasing VWC, 1 to 5 kg/m2. Red Squares indicate different soil 𝜖𝑟 and 𝑘 ∙ 𝑠 

conditions. Left panel shows a low noise scenario (𝑘𝑝 = 0.5 dB and Δ𝑇 = 1.5 K) and the right panel shows a high noise scenario (𝑘𝑝 = 1.5 dB and Δ𝑇 = 3 

K). 

For dry soil conditions and changing VWC values, model 

ambiguity with respect to variation of surface roughness is 

larger compared to that due to changes in soil permittivity. This 

can be observed in the smaller search regions in Fig. 5 (left 

panel). The increased ambiguity for wetter and rougher surfaces 

is recognized as signal saturation. More specifically, as the soil 

moisture content increases, radar backscatter loses sensitivity. 

Thus, a larger set of possible solutions exists. This is also 

evident in Fig. 2. 

III. SURFACE SOIL MOISTURE AND ROUGHNESS 

RETRIEVAL 

A. Numerical Simulations and Algorithm Performance  

To test the performance of the proposed estimation scheme, 

in the presence of measurement noise, numerical simulations 

are performed on three distinct land cover types of Corn, 

Soybean, and Grass. Noisy radar and radiometer measurements 

are first generated for a large range of soil permittivity, 

roughness, and VWC conditions as listed in Table II. For both 

cases, zero mean additive Gaussian noise with standard 

deviations 𝑘𝑝  and Δ𝑇  are assumed. Monte-Carlo simulations 

are then performed with respect to the regularization term 𝛼, 

while soil permittivity and roughness values are retrieved. For 

each of the noise scenarios listed in Table I, an independent set 

of numerical simulations is also performed. 

Given the compact form of the 𝜏-𝜔 emission model and the 

fact that no calculations are needed to find 𝜎0  from the 

datacubes, it is computationally affordable to use a global 

optimization scheme such as the Simulated Annealing (SA) 

method [21]. Optimum values of soil permittivity and 

roughness �̂� = [𝜖�̂� , �̂�], which minimize 𝐿𝑎𝑝(�̅�) in Eq. 3.d are 

reported as the retrieved parameters. The root mean squared 

error (RMSE) over the entire range of simulated parameters is 

then calculated and reported as a function of the regularization 

term 𝛼 = 𝛾 (
𝑘𝑝

𝛥𝑇
)

2

. In Fig. 6, plots of RMSE for both soil 

permittivity and roughness are shown. Panels (a)-(b) are for 

Corn, (c)-(d) for Grass, and (e)-(f) for Soybean. By varying the 

regularization term 𝛼, through sweeping 𝛾 and different 𝑘𝑝/Δ𝑇 

ratios, the contributing weights of radar 𝜎0 and radiometer TB 

measurements can be changed such that soil moisture estimates 

with the least retrieval errors are obtained. This feature is 

clearly seen in the ‘dips’ (or minima) of the curves in Fig. 6. At 

the extremes, the optimization process utilizes mostly radar data 

(𝛼 is small) or mostly radiometer data (𝛼 is larger). In between, 

active and passive measurements are weighted such that 

retrieval errors are minimized.  

Based on the noise standard deviation values in Table I, four 

scenarios for the ratio of radar to radiometer noise, i.e., 𝑘𝑝/𝛥𝑇, 

is assumed: (a) Low noise, where 𝑘𝑝 and 𝛥𝑇 are both at their 

lower bounds, (b) High noise, such that 𝑘𝑝 and 𝛥𝑇 are set to 

their upper bounds, (c) High-Low, and (d) Low-High. The latter 

two are other noise ratio combinations. As expected, for all land 

covers, under the high noise scenario, minimum retrieval errors 

are larger compared to other scenarios, clearly reflecting the 

impact of measurement noise. Furthermore, for the Low-High 

case, i.e., low radar but high radiometer noise, minimum 

retrieval errors are shifted more towards the radar 

measurements, indicative of a smaller (
𝑘𝑝

Δ𝑇
)

2

ratio and thus 

discounting TB data. Conversely, for the High-Low scenario, 

the minimum is shifted more towards radiometer contributions. 

A summary of Fig. 6 can be see in Table III where the minimum 

achieved RMSE for soil permittivity and the optimum 

regularization term for each noise scenario is shown. Similarly, 

Table IV summarizes RMS errors for surface roughness. 
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TABLE II 

MODEL PARAMETERS FOR NUMERICAL SIMULATIONS 
Parameter Value Unit 

Land Cover Type Corn, Soybean, Grass N/A 

Soil Permittivity (𝜖𝑟) 3-30 N/A 

Surface Roughness (𝑠) 0.01-1 cm 

Vegetation Water Content 0-5 kg/m2 

Radar Noise 𝑘𝑝 0.5-0.7 dB 

Radiometer Noise Δ𝑇 1.5-3 K 

 

 

Fig. 6 Plots of RMSE for Soil Permittivity (left column) and surface roughness (right column). Panels (a)-(b) are Corn, (c)-(d) Soybean, and 

(e)-(f) Grass. All four noise scenarios listed in Table I are included. Low and High Noise scenarios are when 𝑘𝑃 and 𝛥𝑇 are set at their lower 

bound. High-Low and Low-High are other noise ratio permutations; radar noise, i.e., 𝑘𝑝, is mentioned first. 
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Across the entire range of soil moisture, roughness, and 

vegetation parameters, the average RMSE for estimated soil 

relative permittivity is at most 2.5 and for surface roughness is 

0.25 [cm].  Furthermore, observe that the shape and location of 

error minima for permittivity and roughness are not the same. 

This is entirely expected since these variables are independent, 

and their forward model responses and model sensitivities are 

very different.  

Given that independent validation of surface roughness, on 

any scale, is difficult if not impossible, emphasis is placed on 

validation and assessment of the retrieved soil permittivity 𝜖�̂�. 

Although the minimum reported errors for surface roughness 

values, as seen in Figs. 6b-6d and Table IV, are particularly 

small, roughness is considered a free parameter within the 

optimization framework.  

In practice, sweeping over 𝛼 or 𝛾 terms to find their optimum 

values, which yield best retrievals, is impractical and time 

consuming. Therefore, for each land cover type, under the 

High-High (hh) noise scenario, optimum regularization terms 

are selected 𝛼𝑜𝑝𝑡
ℎℎ  and the effect on all other cases is examined. 

The results are shown in Table V such that for the Low-Low, 

High-Low, and Low-High cases the actual minimum RMSE for 

soil permittivity, RMSE at 𝛼𝑜𝑝𝑡
ℎℎ , and the incurred relative error 

by selecting 𝛼𝑜𝑝𝑡
ℎℎ  are evaluated.  

Referring to Tables III and IV, it can be observed that if the 

optimum value of 𝛼 is selected from the high noise scenario and 

applied to all other cases, the resulting relative error is 

negligible and at most 1.7%. Therefore, a single set of 

regularization terms can be used for Corn, Soybean, and Grass, 

namely 𝛼𝑜𝑝𝑡
𝑐𝑜𝑟𝑛 = 0.08, 𝛼𝑜𝑝𝑡

𝑠𝑜𝑦
= 0.05, 𝛼𝑜𝑝𝑡

𝑔𝑟𝑎𝑠𝑠
= 0.05. For added 

flexibility and to fine-tune soil moisture retrievals, 𝛾  can be 

manually varied between 0.9-1.5, or  𝛼 ∈ [0.05 0.08]. 
To assess the quality of retrievals, a pair-wise comparison 

between true test parameters  (𝜖𝑡𝑟𝑢𝑒, 𝑠𝑡𝑟𝑢𝑒)  and their 

corresponding mean estimates (〈𝜖̂〉, 〈�̂�〉) is performed. That is, 

for discrete pairs of surface roughness and permittivity, 

covering the ranges as listed in Table II, the mean of the 

retrieved parameters obtained from Monte-Carlo simulations is 

compared to the true values. This comparison can be seen in the 

scatter plot of Fig. 7, where the true and estimated pairs of (𝜖, 𝑠) 

are shown; for a more physically-based interoperation of 

surface roughness, the values are not scaled by the wavenumber 

k. The figure shows outcomes of the worst-case scenario, High-

High case.    

Under perfect retrieval conditions, all mean estimates would 

align on top of the test case pairs (red-circles). However, in the 

presence of noise, mean estimates have error, also known as 

bias. This bias is particularly strong for very rough and very wet 

surfaces. As observed in Fig. 7, as the surface roughness and 

soil moisture increase, mean estimates of surface roughness 

degrades. 

Accordingly, errors in predicting soil dielectric constant also 

increase, however their increase is not as severe as for surface 

roughness. This is due to selecting optimization results where 

estimation errors of surface roughness are not minimum, but 

rather soil permittivity estimation errors are minimum. 

Furthermore, observe that the biases in surface roughness, 

except for dry-smooth surfaces, are predominantly negative, 

whereas for soil permittivity they can be either positive or 

negative.  
TABLE III 

MINIMUM SOIL PERMITTIVITY (𝜖𝑟) RETRIEVAL RMS ERRORS  

AND OPTIMUM REGULARIZATION TERM VALUES 

Land Cover 

Type 
Corn Soybean Grass  

Parameter 

/Noise  

Min 

RMSE  
𝛼𝑜𝑝𝑡 

Min 

RMSE 
𝛼𝑜𝑝𝑡 

Min 

RMSE 
𝛼𝑜𝑝𝑡 

High-Low 1.71 0.32 1.91 0.32 2.16 0.32 

High-High 2.06 0.08 2.16 0.05 2.45 0.05 

Low-High 1.71 0.04 1.91 0.04 2.16 0.04 

Low-Low 1.47 0.13 1.40 0.10 1.73 0.16 

 

TABLE IV 

 MINIMUM SURFACE ROUGHNESS (𝑠) [cm] RETRIEVAL RMSE  

AND OPTIMUM REGULARIZATION TERM VALUES  

Land Cover 

Type 
Corn Soybean Grass 

Parameter 

/Noise 

Min 

RMSE 
𝛼𝑜𝑝𝑡 

Min 

RMSE 
𝛼𝑜𝑝𝑡 

Min 

RMSE 
𝛼𝑜𝑝𝑡 

High-Low 0.22 0.16 0.25 0.20 0.23 0.16 

High-High 0.24 0.05 0.28 0.06 0.27 0.06 

Low-High 0.22 0.02 0.25 0.03 0.23 0.02 

Low-Low 0.17 0.05 0.21 0.16 0.21 0.13 

 
TABLE V 

WORST CASE RMS ERRORS FOR SOIL RELATIVE PERMITIVITY   

Land Cover 

Type 
Parameter 

Low-

Low 

High-

Low 

Low-

High 

Corn 

Min. RSME 1.47 1.71 1.71 

RMSE at 𝛼𝑜𝑝𝑡
ℎℎ  1.50 1.71 1.71 

Relative Error (%) 1.71 < 0.01 < 0.01 

Soy 

Min. RSME 1.40 1.91 1.91 

RMSE at 𝛼𝑜𝑝𝑡
ℎℎ  1.40 1.92 1.92 

Relative Error (%) < 0.01 0.12 0.12 

Grass 

Min. RSME 1.73 2.16 2.16 

RMSE at 𝛼𝑜𝑝𝑡
ℎℎ  1.73 2.17 2.17 

Relative Error (%) 0.47 0.35 0.35 

 

To capture the error performance of the results in Fig. 7, the 

RMSE between true and mean estimates of 𝜖𝑟 across the whole 

range of surface roughness are calculated. In the top panel of 

Fig. 8 this error is shown with a maximum error of about 1.4 for 

Grass. Components of the Mean Squared Error (MSE), i.e., 

variance and bias-squared, are also shown in the bottom panel 

of the figure. For all three land-cover types, as soil permittivity 

increases, both variance and bias increase. This is due to lack of 

forward model sensitivity with increasing soil moisture, 

especially for radar scattering models.  
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Fig. 7 Scatter plot of pair-wise permittivity-roughness test points and mean 

estimates for Corn (Blue Triangles), Soybean (Yellow Diamonds), and 

Grass (Green Squared). Red Circles indicate true test points. Estimation 

error increases for rougher and wetter soils. Marker offsets from true points 

indicate the amount of bias due to the optimization. 

 

The MSE for s, similar to Fig. 8, is calculated and shown in 

Fig. 9. The majority of the error contributing to the total MSE 

is due to the existing bias, which is also evident in Fig. 7. As 

mentioned previously, surface roughness estimates are selected 

from where the estimation error of  𝜖𝑟 is minimum; therefore, 

higher errors for s are expected. Furthermore, given that 

validation of surface roughness, in practice, is almost 

impossible, this quantity is viewed as a free parameter allowing 

the optimization scheme to compensate for measurement and 

observation noise. 

An important metric when evaluating retrieval algorithms is 

the error performance with respect to changes in VWC. With 

increasing VWC, vegetation emission and scattering 

contributions begin to dominate the total measured 𝜎0 or TB, 

thus masking surface contributions. This effect was seen in Fig. 

5, where the effective search space expanded as VWC 

increased. To evaluate the upper error bound, for each VWC 

value the RMS error in 𝜖𝑟 across the range of permittivity and 

roughness is calculated and shown in Fig. 10. Similarly, the 

error in surface roughness estimation is calculated. Errors in 

both parameters increase as VWC increases which is commonly 

observed in many retrieval methods. 

B. Soil Moisture Retrieval Using ComRAD Data  

The soil moisture retrieval method outlined in the previous 

section is applied to data obtained from the Combined Radar-

Radiometer (ComRAD) tower mounted system [22] [23]. 

ComRAD is a ground-based simulator of SMAP and includes a 

quad-pol L-band (1.25 GHz) radar and a dual-pol total-power 

L-band (1.4 GHz) radiometer. Both instruments share a single 

parabolic dish antenna with an incident angle of 40o. 

During the summer and fall of 2012 (June to October) 

ComRAD recorded a collection of collocated radar and 

radiometer measurements overlooking corn and soybean fields.  

 

 
Fig. 8 Worst-case average RMSE for 𝜖𝑟 for all three crop types (top panel). 

Mean Squared Error (MSE) for 𝜖𝑟 shown as Variance and Bias2 components 

of the error (bottom panel).   

 
Fig. 9 Worst-case average RMSE for surface roughness s for all three crop 

types (top panel). Bias contributions to the total MSE dominate the error 

and increase with increasing s (bottom panel).  

 

These field sites were located at the U.S. Department of 

Agriculture-Agricultural Research Service (USDA-ARS) 

Beltsville Agricultural Research Center in Beltsville, MD. Over 

the duration of the experiment, additional land surface 

parameters including soil moisture, physical temperature, and 

VWC were recorded on a regular basis.  

Individual radar-only, radiometer-only, and C-AP 𝛼𝑜𝑝𝑡  soil 

moisture estimates for corn and soybean are shown in the 

scatter plots of Figs. 13 and 14. Note that for radar-only Corn 

soil moisture estimates, large portions of the retrievals are 

capped at approximately 0.44 cm3/cm3. This artifact can be 

attributed to two underlying reasons and are explained as 

follows.  
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Fig. 10 Average RMSE for 𝜖𝑟  increases with increasing VWC for Corn, 

Soybean and Grass (top panel).  Bottom panel shows the RMSE for 

roughness for the same three vegetation types. Note that the maximum VWC 

for Soybean is 3 kg/m2. 

Emphasis is placed on validating only retrieved soil moisture. 

The soil’s complex permittivity 𝜖𝑟  is first retrieved then 

converted to soil moisture using the Mironov mixture model 

[24]. Model and in situ Land Surface Parameters (LSP) are 

summarized in Table VI. This set of parameters has already 

been used and verified in a previous study [9]. The parameter b 

is generally empirically defined, and in the 𝜏-𝜔 model along 

with VWC determines the amount of vegetation opacity 𝜏 = 𝑏 ⋅

𝑉𝑊𝐶 and emission attenuation 𝑒−𝜏⋅sec 𝜃𝑖 . The single scattering 

albedo is defined as 𝜔.  Radar datacubes for Corn and Soybean, 

similar to the previous section, are used as the forward 

scattering models. Soil moisture retrievals will be assessed and 

compared to the true in situ samples based on the following 

metrics (a) RMSE (b) Correlation coefficients (c) Standard 

Deviation.   

In Fig. 11, as a function of 𝛼 = 𝛾 (
𝑘𝑝

Δ𝑇
)

2

, the RMSE in 

estimating soil moisture for both crop types is shown. When 𝛼 

is small, radiometer data are weighted less, thus radar 

backscatter measurements dominate the cost function. The 

radar-only RMSE for Corn is 0.22 cm3/cm3 and 0.12 cm3/cm3 

for Soy, both of which are substantially higher than the SMAP 

acceptance criterion of 0.04 cm3/cm3. As 𝛼 increases, the errors 

for Corn and Soybean decrease, such that when 𝛼 is largest, 

11.1 [dB/K]2, radiometer-only inversions yield the smallest 

errors. This outcome is consistent with previous work [9] where 

comparisons between forward model predictions and radar 

measurements showed noticeable error and bias. In short, as 𝛼 

increases, radar induced model-data mismatch effects are 

reduced and the retrieval error improves. It is important to note 

here that the form of the objective function only modifies the 

radiometer-only contributions and their dominance, hence 

increasing 𝛼  increases 𝐿𝑝(�̅�)  weights. Alternative objective 

function forms can be defined such that the regularization term 

alters radar-only contributions.  

TABLE VI 

COMRAD IN SITU AND MODEL PARAMETERS  

Parameter Value Unit 

in situ LSP 

Soil Moisture 0.03-0.25 cm3/cm3 

Corn VWC 0.3-2 kg/m2 

Soybean VWC 0.3-0.4 kg/m2 

Surface Roughness NA cm  

Clay Fraction 14 % 

Sand Fraction 62 % 

Silt Fraction 24 % 

b 

Corn 
0.01 V-pol 

0.1 H-pol 

Soy 
0.01 V-pol 

0.35 H-pol 

𝝎 

Corn 
0.1 V-pol 

0.01 H-pol 

Soy 
0.01 V-pol 

0.01 H-pol 

Noise 

Stn.Dev. 

Radar 𝑘𝑝 0.5 dB 

Radiometer Δ𝑇 1.5 K 

In the simulation analysis presented in Section III, an 

optimum regularization parameter was selected for each land 

cover type of interest. The RMSE at these points are 0.07 

cm3/cm3, for Corn at 𝛼𝑜𝑝𝑡
𝑐𝑜𝑟𝑛 = 0.08 , and 0.053 cm3/cm3 for 

Soybean at 𝛼𝑜𝑝𝑡
𝑠𝑜𝑦

= 0.05. 

A convenient way to compare the performance of various 

estimation models with respect to true observations is the use 

of Taylor diagrams [25], where the three metrics of unbiased 

RMSE (or Centered RMSE), correlation length, and standard 

deviation are summarized and presented simultaneously. These 

statistics for ComRAD retrievals are shown in the Taylor 

diagrams of Fig. 12. Radar-only (labeled as Radar), radiometer-

only (labeled RAD) and combined radar-radiometer at 𝛼𝑜𝑝𝑡 

statistics are presented. These values are also summarized in 

Table VII. Also, a series of other active-passive combinations 

are plotted to show the progression of statistics as the 

regularization term changes. 

With respect to in situ field observations, radiometer-only 

retrievals have the least unbiased RMSE (0.025 and 0.017 

cm3/cm3 for Corn and Soy respectively), and comparable 

standard deviation of 0.03 and 0.04 cm3/cm3 for Corn and Soy 

respectively. Although radar-only estimates show a large 

correlation with respect to in field measurements, their retrieval 

RMSE and variations are much larger than radiometer-only 

outcomes. Statistics calculated at 𝛼𝑜𝑝𝑡  are comparable to 

radiometer-only values with slightly higher correlations. Both 

methods, however, do meet the SMAP unbiased RMS error 

criterion of 0.04 cm3/cm3 volumetric soil moisture content.  
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Fig. 11 ComRAD Soil Moisture retrieval RMSE for corn and soybean. Error 

values at 𝛼𝑜𝑝𝑡 are show by the squares and are 0.07 and 0.053 cm3/cm3 for 

Corn and Soybean respectively.  

First, in a prior study [9], a detailed comparison between 

ComRAD radar backscatter measurements and the Corn 

datacube was presented. Using the same available in situ soil 

moisture and Corn VWC information it was observed that the 

best ComRAD-datacube 𝜎0 match-up for Corn was achieved 

when surface roughness was set to about 4.5 [cm]. However, 

the resulting RMSE between ComRAD 𝜎0 and model outputs 

was still significant, e.g., RMSE of 1.2 dB and bias of 0.5 dB 

for 𝜎𝑣𝑣
0 . Similarly, a best-case RMSE of 1.5 dB for Soybean was 

determined. These discrepancies were attributed to forward 

model shortcomings and deficiencies, especially when 

considering the fact that croplands typically have lower levels 

of roughness.  

Second, strict consistency within the active-passive 

optimization framework has been enforced. That is, both 

models share the same parameter space as well as the same 

upper and lower bounds on soil moisture and roughness. More 

specifically, the radar datacubes’ surface roughness has a range 

of validity up to 5 [cm]. However, in the tau-omega model, 

surface roughness effects on emission are modeled as an 

exponential modification to the p-polarized Fresnel Equation 

𝑟0𝑝, i.e., 𝑟𝑝 = 𝑟0𝑝𝑒−4(𝑘∙𝑠⋅cos 𝜃)2
. The upper theoretical limit, at 

L-band, is typically when 𝑘 ∙ 𝑠 ≤ 0.3 or 𝑠 ≈ 1 [cm]. Beyond 

this value, incoherent surface reflectivity and emission overtake 

the coherent component, and thus are not modeled properly. 

Therefore, knowing that (a) for Corn ComRAD-datacubes 𝜎0 

are closest when surface roughness is about 4.5 [cm] and (b) 

limiting the optimization’s upper bound to 1 [cm], it is expected 

to see invalid soil moisture retrievals.  

To mitigate this artifact, in Fig. 15 Corn radar-only retrievals 

are regenerated, but with a roughness upper bound of 5 [cm]. A 

significant improvement in the unbiased RMSE is now 

observed and the RMSE reduces from 0.113 [cm3/cm3] to 0.041 

[cm3/cm3]. Furthermore, individual soil moisture estimates 

become comparable to outputs for the C-AP 𝛼𝑜𝑝𝑡 case. Under 

this optimization scenario, models are no longer affected by the 

parameterization constraints of the pairing forward model. 

However, strict active-passive consistency is no longer 

enforced. 
TABLE VII 

 COMRAD SOIL MOISTURE ESTIMATION STATISTICS 

Crop 

Type 
Metrics 

Radar-

only 

Radiometer-

only 

C-AP at 

𝛂𝐨𝐩𝐭 

Corn 

ubRMSE  0.113 0.025 0.031 

R2 0.880 0.805 0.923 

Stn.dev.  0.137 0.042 0.055 

Soybean 

ubRMSE  0.067 0.017 0.018 

R2 0.870 0.830 0.900 

Stn.dev.  0.090 0.030 0.040 

ubRMSE: Unbiased RMSE; R2 : Correlation Coefficient; Stn.dev.: Standard 

Deviation; ubRSME and Stn.dev are in [cm3/cm3].  

 
TABLE VIII 

COMRAD SURFACE ROUGHNESS ESTIMATES [cm] 

Crop Type Metrics 
Radar-

only 

Radiometer-

only 

C-AP at 

𝛂𝐨𝐩𝐭 

Corn 
Mean 0.9 0.95 1.1 

Stn.dev. 0.16 0.34 0.03 

Soybean 
Mean 0.9 0.8 1.08 

Stn.dev. 0.1 0.3 0.06 

 

The example presented here highlights the importance of 

consistent forward emission and scattering modeling when 

performing combined active-passive soil moisture estimation. 

Since the measured backscatter and TB are dependent on the 

same set of physical properties of the scene, both models must 

consistently capture the underlying physical phenomena. 

Therefore, it is hypothesized that the accuracy of soil moisture 

retrievals, within an C-AP framework, will significantly 

increase with a uniform theoretical development of forward 

models which concurrently predict the amount of emission and 

scattering, while using a single parameter kernel valid for both 

physical processes.  

 

IV. CONCLUSION AND DISCUSSION 

Through extensive numerical simulations and tests on actual 

field data it was shown that, in a combined active-passive 

context with noise dependent self-regularization, soil moisture 

estimation with errors meeting the SMAP 0.04 [cm3/cm3] 

volumetric water content accuracy threshold are possible. More 

specifically, unbiased RMSE for soil moisture using ComRAD 

data and the proposed objective function, Eq. 3.d, are 0.031 

[cm3/cm3] and 0.018 [cm3/cm3] for Corn and Soybean, 

respectively. Furthermore, by using multiple measurements of 

difference polarizations (HH, VV, and TB-H and TB-V) the 

available information space expands and more than one 

unknown parameter can be retrieved. Specifically, it was shown 

here that surface soil moisture can be estimated, while at the 

same time assuming surface roughness to be another unknown, 

yet free parameter. 
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Fig. 12: Taylor diagrams for (a) Corn and (b) Soybean. Radar-only (Radar), Radiometer-only (RAD) and combined radar-radiometer at 𝛼𝑜𝑝𝑡 are shown. 

Smaller black circles are the statistics for a series of other retrieval efforts prior to 𝛼𝑜𝑝𝑡. The in situ data collected at the same time of ComRAD data acquisitions 

are marked as “True” with standard deviation of 0.03 and 0.028 cm3/cm3 for corn and soybean fields respectively.  

 

  
Fig. 13 Radar-only (blue squares), Radiometer-only (red diamonds) and C-AP 

at 𝛼𝑜𝑝𝑡 (green circles) soil moisture estimates for Corn; respective unbiased 

RMS errors are 0.113, 0.025, 0.031 [cm3/cm3]. 

Fig. 14 Radar-only (blue squares), Radiometer-only (red diamonds) and C-

AP at 𝛼𝑜𝑝𝑡 (green circles) soil moisture estimates for Soybean; respective 

unbiased RMS errors are 0.067, 0.017, 0.018 [cm3/cm3]. 

One can argue that radiometer-only soil moisture retrievals 

discussed Section III.B are superior to radar-only or C-AP. A 

goal of this work, in a broader context, is to develop and present 

a fully adaptive scheme where it becomes possible to obtain 

best soil moisture retrievals by fully utilizing the available radar 

and radiometer information and not rely on a single set of 

observations or models. If, for a given scenario, radar-only or 

radiometer-only approaches, within the joint-optimization 

framework, yield retrievals with least errors, the goal is still 

achieved.  

An alternate application of the proposed objective function is to 

perform C-AP soil moisture retrieval using high-resolution TB 

data, derived via disaggregation approaches. Here, 𝛥𝑇 within 

the regularization term 𝛾 (
𝑘𝑝

𝛥𝑇
)

2

 can be interpreted as the 

expected brightness temperature disaggregation standard 

deviation error rather than the noise standard deviation for the 

single resolution scenario. 

A key assumption in active-passive soil moisture retrieval at 

L-band is that both the radar and radiometer observe the same 

scene, and both forward models share the same unknowns 

within the optimization. In addition, soils are typically modeled 

as semi-infinite dielectric slabs with uniform permittivity; thus 

the C-AP method outputs a single soil moisture value. For 

environments where there is a meaningful penetration and 

emission depth difference between radar (1.26 GHz) and 

radiometer (1.41 GHz), e.g., very dry-sandy soils, the current 

optimization method is prone to error and outputs cannot be 

attributed to different depths; the current modeling does not 

support potential depth differences. Addressing this requires 

incorporating more accurate soil dielectic, scattering and 

emission models as well as modifications to the optimization 

routines. 
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For a fully combined active-passive soil moisture estimation 

technique, development of consistent forward scattering and 

emission models is also motivated. Models that predict radar 

backscatter and radiometer emission from a unified theoretical 

basis can significantly improve soil moisture estimation errors. 

Within such models, firstly a single parameter kernel is used 

and secondly emission and scattering responses to changes in 

vegetation and surface roughness are consistently derived. The 

effects of model and parameterization inconsistencies were 

highlighted in Fig. 13, where due to both model-data 

mismatches and limitation on the bounds of surface roughness, 

unrealistic soil moisture estimates were produced with a high 

level of error.  
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