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ABSTRACT 

 

Soil roughness strongly influences processes like erosion, 

infiltration, moisture and evaporation of soils as well as 

growth of agricultural plants. An approach to soil roughness 

based on active-passive microwave covariation is proposed 

in order to simultaneously retrieve the vertical RMS height 

(s) and horizontal correlation length (l) of soil surfaces from 

simultaneously measured radar and radiometer microwave 

signatures. The approach is based on a retrieval algorithm for 

active-passive covariation including the improved Integral 

Equation Method (I2EM). The algorithm is tested with the 

global active-passive microwave observations of the SMAP 

mission. The developed roughness retrieval algorithm shows 

independence of permittivity for 𝜀𝑠 > 10 [-] due to the 

covariation formalism. Results reveal that s and l can be 

estimated simultaneously by the proposed approach since 

surface patterns of non-vegetated areas become evident on 

global scale. In regions with sandy deserts, like the Sahara or 

the outback in Australia, determined 𝑠 and 𝑙 confirm rather 

smooth to semi-rough surface roughness patterns with small 

vertical RMS heights and corresponding higher horizontal 

correlation lengths. 

 

Index Terms— radar, radiometer, RMS height, 

correlation length, covariation, I2EM 

 

1. INTRODUCTION 

 

Soil roughness as a boundary property between the 

pedosphere and the atmosphere is an essential variable in 

numerous physical processes which are related to water, 

energy and nutrient flux and exchange [1]. It plays an 

indispensable role in soil moisture sensing from active and 

passive microwave techniques, one of the key state variables 

in the global water cycle having significant impact on the 

global weather and climate system [2]. Due to their critical 

role in land surface dynamics, both soil moisture and soil 

roughness affect the brightness temperature 𝑇𝑏𝑃 [K] and 

backscatter |𝑆𝑃𝑃|2 [dB] characteristics of natural surfaces 

measured by radiometers and radars, respectively. While 𝑇𝑏𝑃 

can be expressed as a function of soil moisture, soil roughness 

and effective surface temperature for bare soils [3], |𝑆𝑃𝑃|2 is 

only dominated by surface soil moisture and soil roughness 

for the case of bare soils [4], at polarization 𝑃, respectively. 

In the last decades, soil roughness is regarded as a 

subordinate variable in the field of microwave remote sensing 

despite its importance in several environmental applications 

such as land surface modeling for soil erosion [1]. The two 

fundamental parameters which describe the soil surface 

roughness are the standard deviation of the surface height 

variation (or RMS height) denoted by 𝑠 [cm] with its related 

autocorrelation function (ACF), and the surface correlation 

length denoted by 𝑙 [cm]. In order to estimate 𝑠 and 𝑙 
concurrently and independent of permittivity we link active 

and passive microwave signatures through their covariation.  

 

2. DATASET 

 

Global data from NASA’s Soil Moisture Active Passive 

(SMAP) mission launched in 2015 is applied for this study. 

We used the SMAP L1B Radar Half-Orbit Time-Ordered low 

resolution backscatter |𝑆𝑃𝑃|2 [5], the SMAP L1C Radiometer 

Half-Orbit Time-Ordered Brightness Temperatures 𝑇𝑏𝑃 [6], 

the physical soil temperature 𝑇𝑃𝐻𝑌𝑆 and soil moisture 

extracted from the SMAP L3SM_P products [7], all posted 

on a 36 km Equal-Area Scalable Earth-2 (EASE-2) grid [8, 

9]. The period of study with SMAP data covers the months 

from 04/14/2015 to 07/07/2015 until the failure of the SMAP 

radar sensor [9].  

For filtering of the retrieval results to non-vegetated areas we 

used the vegetation optical depth (VOD) posted on a 36 km 

EASE-2 grid from the SMAP dataset processed with the 

multi-temporal dual-channel retrieval algorithm (MT-DCA) 

[9], and the surface condition quality flags for snow and 

frozen ground from the SMAP L3 Radiometer Global and 

Northern Hemisphere Daily 36 km EASE-Grid Freeze/Thaw 

State [10]. 

 

3. METHODS 

 

In order to combine microwave measurements from radar and 

radiometers independently of permittivity, their covariation 

with soil moisture is utilized [11, 12, 13]. We introduced the 

formulation for active-passive covariation already in [13]. 

The basic of this method are the data-based 𝛽𝑃𝑃 
𝐷𝑎𝑡𝑎 and the 

model-based 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙𝐴𝐶𝐹  covariation parameters for 
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simultaneous retrieval of surface roughness parameters 𝑠 and 

𝑙 [13]. 

 

3.1. Formulation of Active-Passive Microwave 

Covariation 
 

The fundamental formulation of active-passive microwave 

covariation is based on Kirchhoff’s law of energy 

conservation and derived in [12]. The covariation-based 

retrieval formulation includes the emissivity 𝐸𝑃 [-] and 

backscattering |𝑆𝑃𝑃|2 [-] characteristics of bare surfaces and 

is proposed here for active-passive soil roughness retrieval at 

L-band. The relationship between the backscattering 

coefficient of the active radar (|𝑆𝑃𝑃|2) and the emissivity 

(𝐸𝑃 =  𝑇𝑏𝑃
/𝑇) based on brightness temperatures 𝑇𝑏𝑃

 [K] of 

the passive radiometer is functionally linear and can be 

expressed by the two parameters 𝛼 and 𝛽, with 𝛼 [-] being 

the intercept and 𝛽 [-] being the slope of a linear regression 

(1) [8]. 

𝑇𝑏𝑃
/𝑇 =  𝛼 + 𝛽 ∗  |𝑆𝑃𝑃|2  (1) 

For bare soils the intercept 𝛼 is 1, due to the fact that 

vegetation is absent [12].  

Based on (1), the 𝑃-polarized covariation parameter can be 

calculated with (2), which stems from [11] and [14], and is 

the inversion of the active-passive covariation forward model 

for bare soils presented in [12]: 

𝛽 =
𝐸𝑃−1

|𝑆𝑃𝑃|2  =   

𝑇𝑏𝑃
𝑇𝑃𝐻𝑌𝑆

 − 1

|𝑆𝑃𝑃|2 , (2) 

with 𝑇𝑃𝐻𝑌𝑆 [K] as physical surface temperature from the top 

5 cm layer of the soil. 

Thus, the slope 𝛽 describes the covariation between 

emissivity and backscatter for bare soils due to soil 

roughness. One restriction is that both sensors, radar and 

radiometer, need to have the same spatial resolution in order 

to observe the same roughness scale. Plus, since microwave-

retrieved soil surface roughness is dependent on the 

wavelength of the observation system, the surface roughness 

parameters 𝑠 and 𝑙 are estimated in units of wavelength and 

subsequently need to be scaled by the wave number 𝑘 =
2𝜋/𝜆 to the unit of meters. 

 

3.1.1. Data-based Retrieval of covariation 

The data-based covariation parameter 𝛽𝑃𝑃 
𝐷𝑎𝑡𝑎 [-] for 

polarization 𝑃 is calculated according to (2). As input 

parameters for active-passive microwave signatures (𝑇𝑏𝑃
, 

𝑇𝑃𝐻𝑌𝑆 and |𝑆𝑃𝑃|2) we used the datasets from the SMAP 

mission (cf. 2.). 

 

3.1.2. Definition of Forward Model for covariation 

The model-based covariation parameter 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙𝐴𝐶𝐹  [-] for 

respective polarization 𝑃 and type of ACF calculated with the 

proposed covariation-based retrieval algorithm (2), is 

dependent on surface roughness parameters 𝑠 and 𝑙. We 

defined a range of values for the surface roughness parameter 

𝑠 from 0.05 cm to 10 cm in 0.1 cm steps, and 𝑙 from 1 cm to 

21 cm in 1.0 cm steps.  

Besides 𝑠 and 𝑙, input parameter for active-passive 

microwave signature simulations is the permittivity 𝜀𝑠, 

retrieved from soil moisture information by a pedo-transfer 

function like [15]. 

Within the first presentation of this active-passive retrieval 

algorithm in [13], the covariation parameter 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙𝐴𝐶𝐹  is the 

ratio of Fresnel and Bragg roughness loss terms. However, 

sensitivity analyses revealed unsatisfying results for the 

retrieval of surface correlation length 𝑙. The reason could be 

the missing incoherent part of surface scattering within the 

Fresnel roughness loss term. Hence, we revised our approach 

for simultaneous retrieval of surface roughness parameters 

and used the I2EM for simulations of active and passive 

microwave bare soil interactions. The reason for employing 

the I2EM is its physics basis and analytical formalism for 

backscatter and emissivity based on surface roughness 

parameters 𝑠 and 𝑙, frequency, incident angle and permittivity 

[16, 17]. Due to its analytical formalism, I2EM is preferred 

over more computationally intensive numerical methods such 

as the Numerical Maxwell Model in 3-D (NMM3D) [17]. 

 

3.2. Estimation of Surface Roughness Parameters 𝒔 and 𝒍 

 

As described in [13], we determine the best fit between 

model- and data-based covariation parameters in order to 

estimate surface roughness parameters 𝑠 and 𝑙. Hence, we 

calculate the differences for horizontal as well as vertical 

polarizations and add up the respective results for both 

polarizations. We then receive a look-up-table (LUT) with 

the dimensions of the pre-defined ranges of roughness 

parameters 𝑠 and 𝑙. The position of the global minimum of 

the LUT corresponds to the best-fitting values for surface 

roughness parameters 𝑠 and 𝑙 [13]. 

 

4. RESULTS 

 

4.1. Sensitivity analyses on permittivity with I2EM 

 

Besides surface roughness parameters 𝑠 and 𝑙 permittivity 𝜀𝑠 

is the other input parameter into the I2EM for calculation of 

backscatter and emissivity. In order to determine the 

influence of 𝜀𝑠 on surface roughness parameter retrievals we 

conducted several sensitivity analyses. For instance, we 

compared the full range of physically possible permittivity 

values with the calculated model-based covariation 

parameter 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙𝐴𝐶𝐹  for both polarizations. As depicted in 

Figure 1, results show that for higher permittivity values the 

𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙𝐴𝐶𝐹  is at constant level and only exhibits changes for 

𝜀𝑠 approximately lower than ten. Hence, with increasing 𝜀𝑠 

the I2EM computed backscatter and emissivity are more and 

more insensitive to permittivity which in turn applies to the 



I2EM-based retrieval of surface roughness parameters 𝑠 and 

𝑙. 

Figure 1. Influence of permittivity on model-based covariation 

parameter 𝜷𝑷−𝑷𝑷
𝑴𝒐𝒅𝒆𝒍𝑨𝑪𝑭 from backscatter and emissivity values of 

I2EM assuming a Gaussian ACF. (A) Results for 𝜷𝑯−𝑯𝑯
𝑴𝒐𝒅𝒆𝒍𝑨𝑪𝑭, (B) 

Results for 𝜷𝑽−𝑽𝑽
𝑴𝒐𝒅𝒆𝒍𝑨𝑪𝑭; Model input parameters: vertical RMS 

height of 0.5 cm, 1.5 cm and 2.5 cm, horizontal correlation length 

of 4 cm, 7 cm and 10 cm.  

 

4.2. Global surface roughness retrieval with SMAP data 

 

Figure 2 illustrates the retrieval results for surface roughness 

parameters 𝑠  and 𝑙 calculated with the proposed covariation-

based approach assuming a Gaussian ACF. Pixels with VOD 

> 0.12 or with more than one day covered by snow or frozen 

ground during the investigation period or with > 5 % water 

fraction are masked to guarantee analyzes exclusively for 

bare soils. 

Results for surface roughness parameter 𝑠 are in the range 

from 0.05 m to 7 cm with most frequent heights (~60.3 %) 

between 0.05 cm to 4 cm. In Figure 2A the smallest RMS 

heights are found within the Sahara whereas largest heights 

are reached at the edges of the Sahara or in Australia due to 

sparse vegetation (e.g. shrublands). Results for surface 

roughness parameter 𝑙 are between 1 cm and 21 cm with most 

lengths (~75.4 %) from 2 cm to 6 cm. Lowest horizontal 

correlation lengths are estimated, for instance, in the Sahara 

or in the southern part of Australia. Largest lengths can be 

found in the north western part of Australia as well as in 

Kazakhstan and Mongolia (cf. Fig. 2B). 

 
Figure 2. Global time-averaged (April-July 2015) results for 

estimated surface roughness parameters 𝒔 (A) and 𝒍 (B) assuming 

a Gaussian ACF and using SMAP active and passive microwave 

observations. Inset shows histogram of the estimated parameter. 

 

By taking a closer look at both roughness parameters, results 

show opposed retrievals for vertical RMS heights and 

horizontal correlation lengths. This means, in regions with 

smallest RMS-heights the corresponding autocorrelation 

lengths are largest and vice versa. Furthermore, retrieval 

results for 𝑠 and 𝑙 indicate rather smooth surface structures in 

regions with deserts, like the Sahara in Africa, the outback in 

Australia or the northern part of the Gobi in Mongolia, and 

rather rough surface structures at the edge of deserts, like 

south of the Sahara or the outback in Australia. 

Sensitivity analyses based on comparisons of initial and 

retrieved values for surface roughness parameter 𝑠 and 𝑙 with 

varying deviation on the I2EM computed input parameters 

confirmed the feasibility and accuracy of the proposed 

covariation-based approach with correlations between input 

and output 𝑠-values from 77 % to 98 %. 

Compared to presented surface roughness results for 𝑠 and 𝑙 
in [13], further analyses revealed that the revised covariation-

based approach proposed in this study outperforms the 

initially introduced retrieval algorithm in [13] (based on 

Fresnel and Bragg roughness loss terms) especially regarding 

the estimation of the horizontal correlation length. 

 

5.  CONLCUSION 

 

In this study, we presented a covariation-based retrieval 

algorithm to simultaneously determine surface roughness 

parameters (𝑠, 𝑙) from combined polarimetric radar and 

radiometer microwave signatures of the SMAP mission. The 

analyses for bare soil areas on the globe confirm that surface 

roughness parameters 𝑠 and 𝑙 can be calculated 



simultaneously over large sparsely and non-vegetated areas, 

compared to field-based techniques, and for each individual 

active-passive acquisition pair (no time series needed). 

Admitting, this requires nearly identical spatial resolutions 

for active radar and passive radiometer acquisitions in order 

to observe roughness at the same scale. The utilization of the 

covariation parameter 𝛽 combined with the forward model 

I2EM to retrieve surface roughness parameters 𝑠 and 𝑙 
concurrently provides the advantage of a quasi-permittivity-

independent algorithm for non-arid soils (𝜀𝑠 > 10 [-], cf. Fig. 

1). Furthermore, the model basis (I2EM) of the approach 

enables the application of varying autocorrelation functions 

(ACF). Hence, calculations for 𝑠 and 𝑙 can also be performed 

for an exponential or n-exponential ACF and will be further 

investigated. 

Despite the rather coarse resolution of the SMAP datasets 

(~36 km) the retrieval results for 𝑠 and 𝑙 can be used as larger-

scale indicators of global soil surface patterns. In regions with 

rather smooth surface structures, like sandy deserts (e.g. parts 

of Sahara or Gobi), the estimated surface roughness 

parameters are also indicating rather smooth surface 

structures with small vertical RMS heights and corresponding 

higher horizontal correlation lengths. 
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