1,079 research outputs found

    Managing Large Scale Project Analysis Teams through a Web Accessible Database

    Get PDF
    Large scale space programs analyze thousands of requirements while mitigating safety, performance, schedule, and cost risks. These efforts involve a variety of roles with interdependent use cases and goals. For example, study managers and facilitators identify ground-rules and assumptions for a collection of studies required for a program or project milestone. Task leaders derive product requirements from the ground rules and assumptions and describe activities to produce needed analytical products. Disciplined specialists produce the specified products and load results into a file management system. Organizational and project managers provide the personnel and funds to conduct the tasks. Each role has responsibilities to establish information linkages and provide status reports to management. Projects conduct design and analysis cycles to refine designs to meet the requirements and implement risk mitigation plans. At the program level, integrated design and analysis cycles studies are conducted to eliminate every 'to-be-determined' and develop plans to mitigate every risk. At the agency level, strategic studies analyze different approaches to exploration architectures and campaigns. This paper describes a web-accessible database developed by NASA to coordinate and manage tasks at three organizational levels. Other topics in this paper cover integration technologies and techniques for process modeling and enterprise architectures

    An assessment of electric vehicles and vehicle to grid operations for residential microgrids

    Full text link
    Electric Vehicles (EVs) are a rapidly growing technology which can lower greenhouse-gas emissions in the transport and energy sectors. The EV batteries can discharge the stored energy back to grid, also known as Vehicle-to-Grid (V2G) which can support the integration of variable distributed renewable generation. Previous research identified financial barriers to the implementation of V2G, however, recent advancements in battery technology present new opportunities to make V2G technology viable. Using the current and predicted EV technology trends, this paper evaluates the annual operation and benefits of EVs and V2G in a microgrid environment and demonstrates different modes of operation. Guided by the gaps identified in the literature, one of the main contributions of this research is to uncover the impact of EV charging scenarios on the V2G operations. Furthermore, the research reveals the interactions between V2G and variable renewable generation coupled with utility scale battery over yearlong simulations to assess seasonal characteristics of V2G operations, which was mostly unexplored to date. Simulation results indicate that the operation of V2G in an optimised microgrid environment improves the economic operation of the system and reduces the levelized cost of electricity by up to 5.7%. Additionally, V2G provides more benefit to grids with higher solar generation proportion The results suggest that the latest advancements in EV technology have improved the economic viability of V2G as well as its potential to improve grid efficiency through providing additional storage capacity and peak demand management

    System-of-Systems Technology-Portfolio-Analysis Tool

    Get PDF
    Advanced Technology Life-cycle Analysis System (ATLAS) is a system-of-systems technology-portfolio-analysis software tool. ATLAS affords capabilities to (1) compare estimates of the mass and cost of an engineering system based on competing technological concepts; (2) estimate life-cycle costs of an outer-space-exploration architecture for a specified technology portfolio; (3) collect data on state-of-the-art and forecasted technology performance, and on operations and programs; and (4) calculate an index of the relative programmatic value of a technology portfolio. ATLAS facilitates analysis by providing a library of analytical spreadsheet models for a variety of systems. A single analyst can assemble a representation of a system of systems from the models and build a technology portfolio. Each system model estimates mass, and life-cycle costs are estimated by a common set of cost models. Other components of ATLAS include graphical-user-interface (GUI) software, algorithms for calculating the aforementioned index, a technology database, a report generator, and a form generator for creating the GUI for the system models. At the time of this reporting, ATLAS is a prototype, embodied in Microsoft Excel and several thousand lines of Visual Basic for Applications that run on both Windows and Macintosh computers

    Web-Based Space Mission Visualization Tutorial

    Get PDF
    No abstract availabl

    Hydrogen Production with a Simple and Scalable Membraneless Electrolyzer

    Get PDF
    Ion-conducting membranes are essential components in many electrochemical devices, but they often add substantial cost, limit performance, and are susceptible to degradation. This work investigates membraneless electrochemical flow cells for hydrogen production from water electrolysis that are based on angled mesh flow-through electrodes. These devices can be fabricated with as few as three parts (anode, cathode, and cell body), reflecting their simplicity and potential for low-cost manufacture. 3D printing was used to fabricate prototype electrolyzers that were demonstrated to be electrolyte agnostic, modular, and capable of operating with minimal product crossover. Prototype electrolyzers operating in acidic and alkaline solutions achieved electrolysis efficiencies of 61.9% and 72.5%, respectively, (based on the higher heating value of H2) when operated at 100 mA cm−2. Product crossover was investigated using in situ electrochemical sensors, in situ imaging, and by gas chromatography (GC). GC analysis found that 2.8% of the H2 crossed over from the cathode to the anode stream under electrolysis at 100 mA cm−2 and fluid velocity of 26.5 cm s−1. Additionally, modularity was demonstrated with a three-cell stack, and high-speed video measurements tracking bubble evolution from electrode surfaces provide valuable insight for the further optimization of electrolyzer design and performance

    Three Dimensional Computer Graphics Federates for the 2012 Smackdown Simulation

    Get PDF
    The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in developing distributed simulations using High Level Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville) deployed four federates, two federates simulated a communications server and a lunar communications satellite with a radio. The other two federates generated 3D computer graphics displays for the communication satellite constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim, Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these two federates by describing the functions, algorithms, HLA object attributes received from other federates, development experiences and recommendations for future, participating Smackdown teams
    • …
    corecore