91 research outputs found

    Accuracy of Malaria Rapid Diagnostic Tests in Community Studies and their Impact on Treatment of Malaria in an Area with Declining Malaria Burden in North-Eastern Tanzania.

    Get PDF
    Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2=367.7, p<0.001), while the specificity was significantly higher (94.3%; χ2=143.1, p<0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of<200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p<0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5 °C) (OR≤0.63, p≤0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p<0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers

    Declining Burden of Malaria Over two Decades in a Rural Community of Muheza District, North-Eastern Tanzania.

    Get PDF
    The recently reported declining burden of malaria in some African countries has been attributed to scaling-up of different interventions although in some areas, these changes started before implementation of major interventions. This study assessed the long-term trends of malaria burden for 20 years (1992--2012) in Magoda and for 15 years in Mpapayu village of Muheza district, north-eastern Tanzania, in relation to different interventions as well as changing national malaria control policies.\ud Repeated cross-sectional surveys recruited individuals aged 0 -- 19 years from the two villages whereby blood smears were collected for detection of malaria parasites by microscopy. Prevalence of Plasmodium falciparum infections and other indices of malaria burden (prevalence of anaemia, splenomegaly and gametocytes) were compared across the years and between the study villages. Major interventions deployed including mobile clinic, bed nets and other research activities, and changes in national malaria control policies were also marked. In Magoda, the prevalence of P. falciparum infections initially decreased between 1992 and 1996 (from 83.5 to 62.0%), stabilized between 1996 and 1997, and further declined to 34.4% in 2004. A temporary increase between 2004 and 2008 was followed by a progressive decline to 7.2% in 2012, which is more than 10-fold decrease since 1992. In Mpapayu (from 1998), the highest prevalence was 81.5% in 1999 and it decreased to 25% in 2004. After a slight increase in 2008, a steady decline followed, reaching <5% from 2011 onwards. Bed net usage was high in both villages from 1999 to 2004 (>=88%) but it decreased between 2008 and 2012 (range, 28% - 68%). After adjusting for the effects of bed nets, age, fever and year of study, the risk of P. falciparum infections decreased significantly by >=97% in both villages between 1999 and 2012 (p < 0.001). The prevalence of splenomegaly (>40% to <1%) and gametocytes (23% to <1%) also decreased in both villages.Discussion and conclusionsA remarkable decline in the burden of malaria occurred between 1992 and 2012 and the initial decline (1992 -- 2004) was most likely due to deployment of interventions, such as bed nets, and better services through research activities. Apart from changes of drug policies, the steady decline observed from 2008 occurred when bed net coverage was low suggesting that other factors contributed to the most recent pattern. These results suggest that continued monitoring is required to determine causes of the changing malaria epidemiology and also to monitor the progress towards maintaining low malaria transmission and reaching related millennium development goals

    Community first responders and responder schemes in the United Kingdom: systematic scoping review

    Get PDF
    Background: Community First Responder (CFR) schemes support lay people to respond to medical emergencies, working closely with ambulance services. They operate widely in the UK. There has been no previous review of UK literature on these schemes. This is the first systematic scoping review of UK literature on CFR schemes, which identifies the reasons for becoming a CFR, requirements for training and feedback and confusion between the CFR role and that of ambulance service staff. This study also reveals gaps in the evidence base for CFR schemes. Methods: We conducted a systematic scoping review of the published literature, in the English language from 2000 onwards using specific search terms in six databases. Narrative synthesis was used to analyse article content. Results: Nine articles remained from the initial search of 15,969 articles after removing duplicates, title and abstract and then full text review. People were motivated to become CFRs through an altruistic desire to help others. They generally felt rewarded by their work but recognised that the help they provided was limited by their training compared with ambulance staff. There were concerns about the possible emotional impact on CFRs responding to incidents. CFRs felt that better feedback would enhance their learning. Ongoing training and support were viewed as essential to enable CFRs to progress. They perceived that public recognition of the CFR role was low, patients sometimes confusing them with ambulance staff. Relationships with the ambulance service were sometimes ambivalent due to confusion over roles. There was support for local autonomy of CFR schemes but with greater sharing of best practice. Discussion: Most studies dated from 2005 and were descriptive rather than analytical. In the UK and Australia CFRs are usually lay volunteers equipped with basic skills for responding to medical emergencies, whereas in the US they include other emergency staff as well as lay people. Conclusion: Opportunities for future research include exploring experiences and perceptions of patients who have been treated by CFRs and other stakeholders, while also evaluating the effectiveness and costs of CFR schemes

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria

    Ecology: a prerequisite for malaria elimination and eradication

    Get PDF
    * Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific * The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria * Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission * Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog

    Changing malaria intervention coverage, transmission and hospitalization in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reports of declining incidence of malaria disease burden across several countries in Africa suggest that the epidemiology of malaria across the continent is in transition. Whether this transition is directly related to the scaling of intervention coverage remains a moot point.</p> <p>Methods</p> <p>Paediatric admission data from eight Kenyan hospitals and their catchments have been assembled across two three-year time periods: September 2003 to August 2006 (pre-scaled intervention) and September 2006 to August 2009 (post-scaled intervention). Interrupted time series (ITS) models were developed adjusting for variations in rainfall and hospital use by surrounding communities to show changes in malaria hospitalization over the two periods. The temporal changes in factors that might explain changes in disease incidence were examined sequentially for each hospital setting, compared between hospital settings and ranked according to plausible explanatory factors.</p> <p>Results</p> <p>In six out of eight sites there was a decline in Malaria admission rates with declines between 18% and 69%. At two sites malaria admissions rates increased by 55% and 35%. Results from the ITS models indicate that before scaled intervention in September 2006, there was a significant month-to-month decline in the mean malaria admission rates at four hospitals (trend P < 0.05). At the point of scaled intervention, the estimated mean admission rates for malaria was significantly less at four sites compared to the pre-scaled period baseline. Following scaled intervention there was a significant change in the month-to-month trend in the mean malaria admission rates in some but not all of the sites. Plausibility assessment of possible drivers of change pre- versus post-scaled intervention showed inconsistent patterns however, allowing for the increase in rainfall in the second period, there is a suggestion that starting transmission intensity and the scale of change in ITN coverage might explain some but not all of the variation in effect size. At most sites where declines between observation periods were documented admission rates were changing before free mass ITN distribution and prior to the implementation of ACT across Kenya.</p> <p>Conclusion</p> <p>This study provides evidence of significant within and between location heterogeneity in temporal trends of malaria disease burden. Plausible drivers for changing disease incidence suggest a complex combination of mechanisms, not easily measured retrospectively.</p

    Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya

    Get PDF
    Studies of the fine-scale spatial epidemiology of malaria consistently identify malaria hotspots, comprising clusters of homesteads at high transmission intensity. These hotspots sustain transmission, and may be targeted by malaria-control programmes. Here we describe the spatial relationship between the location of Anopheles larval sites and human malaria infection in a cohort study of 642 children, aged 1–10-years-old. Our data suggest that proximity to larval sites predict human malaria infection, when homesteads are upwind of larval sites, but not when homesteads are downwind of larval sites. We conclude that following oviposition, female Anophelines fly upwind in search for human hosts and, thus, malaria transmission may be disrupted by targeting vector larval sites in close proximity, and downwind to malaria hotspots

    Malaria risk factors in north-east Tanzania

    Get PDF
    BACKGROUND: Understanding the factors which determine a household's or individual's risk of malaria infection is important for targeting control interventions at all intensities of transmission. Malaria ecology in Tanzania appears to have reduced over recent years. This study investigated potential risk factors and clustering in face of changing infection dynamics. METHODS: Household survey data were collected in villages of rural Muheza district. Children aged between six months and thirteen years were tested for presence of malaria parasites using microscopy. A multivariable logistic regression model was constructed to identify significant risk factors for children. Geographical information systems combined with global positioning data and spatial scan statistic analysis were used to identify clusters of malaria. RESULTS: Using an insecticide-treated mosquito net of any type proved to be highly protective against malaria (OR 0.75, 95% CI 0.59-0.96). Children aged five to thirteen years were at higher risk of having malaria than those aged under five years (OR 1.71, 95% CI 1.01-2.91). The odds of malaria were less for females when compared to males (OR 0.62, 95% CI 0.39-0.98). Two spatial clusters of significantly increased malaria risk were identified in two out of five villages. CONCLUSIONS: This study provides evidence that recent declines in malaria transmission and prevalence may shift the age groups at risk of malaria infection to older children. Risk factor analysis provides support for universal coverage and targeting of long-lasting insecticide-treated nets (LLINs) to all age groups. Clustering of cases indicates heterogeneity of risk. Improved targeting of LLINs or additional supplementary control interventions to high risk clusters may improve outcomes and efficiency as malaria transmission continues to fall under intensified control

    Age- and gender-specific risk of death after first hospitalization for heart failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospitalization for heart failure (HF) is associated with high-in-hospital and short- and long-term post discharge mortality. Age and gender are important predictors of mortality in hospitalized HF patients. However, studies assessing short- and long-term risk of death stratified by age and gender are scarce.</p> <p>Methods</p> <p>A nationwide cohort was identified (ICD-9 codes 402, 428) and followed through linkage of national registries. The crude 28-day, 1-year and 5-year mortality was computed by age and gender. Cox regression models were used for each period to study sex differences adjusting for potential confounders (age and comorbidities).</p> <p>Results</p> <p>14,529 men, mean age 74 ± 11 years and 14,524 women, mean age 78 ± 11 years were identified. Mortality risk after admission for HF increased with age and the risk of death was higher among men than women. Hazard ratio's (men versus women and adjusted for age and co-morbidity) were 1.21 (95%CI 1.14 to 1.28), 1.26 (95% CI 1.21 to 1.31), and 1.28 (95%CI 1.24 to 1.31) for 28 days, 1 year and 5 years mortality, respectively.</p> <p>Conclusions</p> <p>This study clearly shows age- and gender differences in short- and long-term risk of death after first hospitalization for HF with men having higher short- and long-term risk of death than women. As our study population includes both men and women from all ages, the estimates we provide maybe a good reflection of 'daily practice' risk of death and therefore be valuable for clinicians and policymakers.</p

    Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 2005, malaria control scale-up has progressed in many African countries. Controlled studies of insecticide-treated mosquito nets (ITNs), indoor residual spraying (IRS), intermittent preventive treatment during pregnancy (IPTp) and malaria case management suggested that when incorporated into national programmes a dramatic health impact, likely more than a 20% decrease in all-cause childhood mortality, was possible. To assess the extent to which national malaria programmes are achieving impact the authors reviewed African country programme data available through 2009.</p> <p>Methods</p> <p>National survey data, published literature, and organization or country reports produced during 2000-2009 were reviewed to assess available malaria financing, intervention delivery, household or target population coverage, and reported health benefits including infection, illness, severe anaemia, and death.</p> <p>Results</p> <p>By the end of 2009, reports were available for ITN household ownership (n = 34) and IPTp use (n = 27) in malaria-endemic countries in Africa, with at least two estimates (pre-2005 and post-2005 intervals). Information linking IRS and case management coverage to impact were more limited. There was generally at least a three-fold increase in household ITN ownership across these countries between pre-2005 (median of 2.4% of households with at least one ITN) and post-2005 (median of 32.5% of households with at least one ITN). Ten countries had temporal data to assess programme impact, and all reported progress on at least one impact indicator (typically on mortality); in under-five year mortality rates most observed a decline of more than 20%. The causal relationship between malaria programme scale-up and reduced child illness and mortality rates is supported by biologic plausibility including mortality declines consistent with experience from intervention efficacy trials, consistency of findings across multiple countries and different epidemiologic settings, and temporal congruity where morbidity and mortality declines have been documented in the 18 to 36 months following intervention scale-up.</p> <p>Conclusions</p> <p>Several factors potentially have contributed to recent health improvement in African countries, but there is substantial evidence that achieving high malaria control intervention coverage, especially with ITNs and targeted IRS, has been the leading contributor to reduced child mortality. The documented impact provides the evidence required to support a global commitment to the expansion and long-term investment in malaria control to sustain and increase the health impact that malaria control is producing in Africa.</p
    corecore