29 research outputs found

    Koala cathelicidin PhciCath5 has antimicrobial activity, including against Chlamydia pecorum.

    Full text link
    Devastating fires in Australia over 2019-20 decimated native fauna and flora, including koalas. The resulting population bottleneck, combined with significant loss of habitat, increases the vulnerability of remaining koala populations to threats which include disease. Chlamydia is one disease which causes significant morbidity and mortality in koalas. The predominant pathogenic species, Chlamydia pecorum, causes severe ocular, urogenital and reproductive tract disease. In marsupials, including the koala, gene expansions of an antimicrobial peptide family known as cathelicidins have enabled protection of immunologically naïve pouch young during early development. We propose that koala cathelicidins are active against Chlamydia and other bacteria and fungi. Here we describe ten koala cathelicidins, five of which contained full length coding sequences that were widely expressed in tissues throughout the body. Focusing on these five, we investigate their antimicrobial activity against two koala C. pecorum isolates from distinct serovars; MarsBar and IPTaLE, as well as other bacteria and fungi. One cathelicidin, PhciCath5, inactivated C. pecorum IPTaLE and MarsBar elementary bodies and significantly reduced the number of inclusions compared to the control (p<0.0001). Despite evidence of cathelicidin expression within tissues known to be infected by Chlamydia, natural PhciCath5 concentrations may be inadequate in vivo to prevent or control C. pecorum infections in koalas. PhciCath5 also displayed antimicrobial activity against fungi and Gram negative and positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Electrostatic interactions likely drive PhciCath5 adherence to the pathogen cell membrane, followed by membrane permeabilisation leading to cell death. Activity against E. coli was reduced in the presence of 10% serum and 20% whole blood. Future modification of the PhciCath5 peptide to enhance activity, including in the presence of serum/blood, may provide a novel solution to Chlamydia infection in koalas and other species

    Waking the sleeping dragon: Gene expression profiling reveals adaptive strategies of the hibernating reptile Pogona vitticeps

    Get PDF
    Background Hibernation is a physiological state exploited by many animals exposed to prolonged adverse environmental conditions associated with winter. Large changes in metabolism and cellular function occur, with many stress response pathways modulated to tolerate physiological challenges that might otherwise be lethal. Many studies have sought to elucidate the molecular mechanisms of mammalian hibernation, but detailed analyses are lacking in reptiles. Here we examine gene expression in the Australian central bearded dragon (Pogona vitticeps) using mRNA-seq and label-free quantitative mass spectrometry in matched brain, heart and skeletal muscle samples from animals at late hibernation, 2 days post-arousal and 2 months post-arousal. Results We identified differentially expressed genes in all tissues between hibernation and post-arousal time points; with 4264 differentially expressed genes in brain, 5340 differentially expressed genes in heart, and 5587 differentially expressed genes in skeletal muscle. Furthermore, we identified 2482 differentially expressed genes across all tissues. Proteomic analysis identified 743 proteins (58 differentially expressed) in brain, 535 (57 differentially expressed) in heart, and 337 (36 differentially expressed) in skeletal muscle. Tissue-specific analyses revealed enrichment of protective mechanisms in all tissues, including neuroprotective pathways in brain, cardiac hypertrophic processes in heart, and atrophy protective pathways in skeletal muscle. In all tissues stress response pathways were induced during hibernation, as well as evidence for gene expression regulation at transcription, translation and post-translation. Conclusions These results reveal critical stress response pathways and protective mechanisms that allow for maintenance of both tissue-specific function, and survival during hibernation in the central bearded dragon. Furthermore, we provide evidence for multiple levels of gene expression regulation during hibernation, particularly enrichment of miRNA-mediated translational repression machinery; a process that would allow for rapid and energy efficient reactivation of translation from mature mRNA molecules at arousal. This study is the first molecular investigation of its kind in a hibernating reptile, and identifies strategies not yet observed in other hibernators to cope stress associated with this remarkable state of metabolic depression.The project was funded by internally allocated funds from UNSW Sydney and in part by a grant from the Australian Research Council (DP170101147) awarded to AG and P

    Report from the First Snake Genomics and Integrative Biology Meeting

    Get PDF
    This report summarizes the proceedings of the 1st Snake Genomics and Integrative Biology Meeting held in Vail, CO USA, 5-8 October 2011. The meeting had over twenty registered participants, and was conducted as a single session of presentations. Goals of the meeting included coordination of genomic data collection and fostering collaborative interactions among researchers using snakes as model systems

    Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?

    No full text
    Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes

    Differential gamma interferon- and tumor necrosis factor alpha-driven cytokine response distinguishes acute infection of a metatherian host with Toxoplasma gondii and Neospora caninum

    Full text link
    © 2017 American Society for Microbiology. All Rights Reserved. Toxoplasma gondii and Neospora caninum (both Apicomplexa) are closely related cyst-forming coccidian parasites that differ significantly in their host ranges and ability to cause disease. Unlike eutherian mammals, Australian marsupials (metatherian mammals) have long been thought to be highly susceptible to toxoplasmosis and neosporosis because of their historical isolation from the parasites. In this study, the carnivorous fat-tailed dunnart (Sminthopsis crassicaudata) was used as a disease model to investigate the immune response and susceptibility to infection of an Australian marsupial to T. gondii and N. caninum. The disease outcome was more severe in N. caninuminfected dunnarts than in T. gondii-infected dunnarts, as shown by the severity of clinical and histopathological features of disease and higher tissue parasite burdens in the tissues evaluated. Transcriptome sequencing (RNA-seq) of spleens from infected dunnarts and mitogen-stimulated dunnart splenocytes was used to define the cytokine repertoires. Changes in mRNA expression during the time course of infection were measured using quantitative reverse transcription-PCR (qRT-PCR) for key Th1 (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), Th2 (interleukin 4 [IL-4] and IL-6), and Th17 (IL-17A) cytokines. The results show qualitative differences in cytokine responses by the fat-tailed dunnart to infection with N. caninum and T. gondii. Dunnarts infected with T. gondii were capable of mounting a more effective Th1 immune response than those infected with N. caninum, indicating the role of the immune response in the outcome scenarios of parasite infection in this marsupial mammal

    Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae)

    No full text
    Reptiles, as the sister group to birds and mammals, are particularly valuable for comparative genomic studies among amniotes. The Australian central bearded dragon (Pogona vitticeps) is being developed as a reptilian model for such comparisons, with whole-genome sequencing near completion. The karyotype consists of 6 pairs of macrochromosomes and 10 pairs microchromosomes (2n = 32), including a female heterogametic ZW sex microchromosome pair. Here, we present a molecular cytogenetic map for P. vitticeps comprising 87 anchor bacterial artificial chromosome clones that together span each macro- and microchromosome. It is the first comprehensive cytogenetic map for any non-avian reptile. We identified an active nucleolus organizer region (NOR) on the sub-telomeric region of 2q by mapping 18S rDNA and Ag-NOR staining. We identified interstitial telomeric sequences in two microchromosome pairs and the W chromosome, indicating that microchromosome fusion has been a mechanism of karyotypic evolution in Australian agamids within the last 21 to 19 million years. Orthology searches against the chicken genome revealed an intrachromosomal rearrangement of P. vitticeps 1q, identified regions orthologous to chicken Z on P. vitticeps 2q, snake Z on P. vitticeps 6q and the autosomal microchromosome pair in P. vitticeps orthologous to turtle Pelodiscus sinensis ZW and lizard Anolis carolinensis XY. This cytogenetic map will be a valuable reference tool for future gene mapping studies and will provide the framework for the work currently underway to physically anchor genome sequences to chromosomes for this model Australian squamate. © 2013 Springer Science+Business Media Dordrecht

    Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards

    No full text
    Distribution of sex-determining mechanisms across Australian agamids shows no clear phylogenetic segregation, suggesting multiple transitions between temperature-dependent (TSD) and genotypic sex determination (GSD). These taxa thus present an excellent opportunity for studying the evolution of sex chromosomes, and evolutionary transitions between TSD and GSD. Here we report the hybridization of a 3 kb genomic sequence (PvZW3) that marks the Z and W microchromosomes of the Australian central bearded dragon (Pogona vitticeps) to chromosomes of 12 species of Australian agamids from eight genera using fluorescence in-situ hybridization (FISH). The probe hybridized to a single microchromosome pair in 11 of these species, but to the tip of the long arm of chromosome pair 2 in the twelfth (Physignathus lesueurii), indicating a micro-macro chromosome rearrangement. Three TSD species shared the marked microchromosome, implying that it is a conserved autosome in related species that determine sex by temperature. C-banding identified the marked microchromosome as the heterochromatic W chromosome in two of the three GSD species. However, in Ctenophorus fordi, the probe hybridized to a different microchromosome from that shown by C-banding to be the heterochromatic W, suggesting an independent origin for the ZW chromosome pair in that species. Given the haphazard distribution of GSD and TSD in this group and the existence of at least two sets of sex microchromosomes in GSD species, we conclude that sex-determining mechanisms in this family have evolved independently, multiple times in a short evolutionary period

    Non-homologous sex chromosomes of birds and snakes share repetitive sequences

    No full text
    Snake sex chromosomes provided Susumo Ohno with the material on which he based his theory of how sex chromosomes differentiate from autosomal pairs. Like birds, snakes have a ZZ male/ZW female sex chromosome system, in which the snake Z is a macrochromosome much the same size as the bird Z. However, the gene content shows clearly that the snake and bird Z chromosomes are completely non-homologous. The molecular aspect of W chromosome degeneration in snakes remains largely unexplored. We used comparative genomic hybridization to identify the female-specific region of the W chromosome in representative species of Australian snakes. Using this approach, we show that an increasingly complex suite of repeats accompanies the evolution of W chromosome heteromorphy. In particular, we found that while the python Liasis fuscus exhibits no sex-specific repeats and indeed, no cytologically recognizable sex-specific region, the colubrid Stegonotus cucullatus shows a large domain on the short arm of the W chromosome that consists of female-specific repeats, and the large W of Notechis scutatus is composed almost entirely of repetitive sequences, including Bkm and 18S rDNA-related elements. FISH mapping of both simple and complex probes shows patterns of repeat amplification concordant with the size of the female-specific region in each species examined. Mapping of intronic sequences of genes that are sex-linked in both birds (DMRT1) and snakes (CTNNB1) reveals massive amplification in discrete domains on the W chromosome of the elapid N. scutatus. Using chicken W chromosome paint, we demonstrate that repetitive sequences are shared between the sex chromosomes of birds and derived snakes. This could be explained by ancestral but as yet undetected shared synteny of bird and snake sex chromosomes or may indicate functional homology of the repeats and suggests that degeneration is a convergent property of sex chromosome evolution. We also establish that synteny of snake Z-linked genes has been conserved for at least 166 million years and that the snake Z consists of two conserved blocks derived from the same ancestral vertebrate chromosome. © 2010 Springer Science + Business Media B.V
    corecore