111 research outputs found

    Unique features of TRIM5α among closely related human TRIM family members

    Get PDF
    AbstractThe tripartite motif (TRIM) protein, TRIM5α, restricts some retroviruses, including human immunodeficiency virus (HIV-1), from infecting the cells of particular species. TRIM proteins contain RING, B-box, coiled-coil and, in some cases, B30.2(SPRY) domains. We investigated the properties of human TRIM family members closely related to TRIM5. These TRIM proteins, like TRIM5α, assembled into homotrimers and co-localized in the cytoplasm with TRIM5α. TRIM5α turned over more rapidly than related TRIM proteins. TRIM5α, TRIM34 and TRIM6 associated with HIV-1 capsid–nucleocapsid complexes assembled in vitro; the TRIM5α and TRIM34 interactions with these complexes were dependent on their B30.2(SPRY) domains. Only TRIM5α potently restricted infection by the retroviruses studied; overexpression of TRIM34 resulted in modest inhibition of simian immunodeficiency virus (SIVmac) infection. In contrast to the other TRIM genes examined, TRIM5 exhibited evidence of positive selection. The unique features of TRIM5α among its TRIM relatives underscore its special status as an antiviral factor

    Effects of human TRIM5α polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection

    Get PDF
    AbstractTRIM5α acts on several retroviruses, including human immunodeficiency virus (HIV-1), to restrict cross-species transmission. Using natural history cohorts and tissue culture systems, we examined the effect of polymorphism in human TRIM5α on HIV-1 infection. In African Americans, the frequencies of two non-coding SNP variant alleles in exon 1 and intron 1 of TRIM5 were elevated in HIV-1-infected persons compared with uninfected subjects. By contrast, the frequency of the variant allele encoding TRIM5α 136Q was relatively elevated in uninfected individuals, suggesting a possible protective effect. TRIM5α 136Q protein exhibited slightly better anti-HIV-1 activity in tissue culture than the TRIM5α R136 protein. The 43Y variant of TRIM5α was less efficient than the H43 variant at restricting HIV-1 and murine leukemia virus infections in cultured cells. The ancestral TRIM5 haplotype specifying no observed variant alleles appeared to be protective against infection, and the corresponding wild-type protein partially restricted HIV-1 replication in vitro. A single logistic regression model with a permutation test indicated the global corrected P value of <0.05 for both SNPs and haplotypes. Thus, polymorphism in human TRIM5 may influence susceptibility to HIV-1 infection, a possibility that merits additional evaluation in independent cohorts

    HLA tapasin independence: broader peptide repertoire and HIV control.

    Get PDF
    Human leukocyte antigen (HLA) class I allotypes vary in their ability to present peptides in the absence of tapasin, an essential component of the peptide loading complex. We quantified tapasin dependence of all allotypes that are common in European and African Americans (n = 97), which revealed a broad continuum of values. Ex vivo examination of cytotoxic T cell responses to the entire HIV-1 proteome from infected subjects indicates that tapasin-dependent allotypes present a more limited set of distinct peptides than do tapasin-independent allotypes, data supported by computational predictions. This suggests that variation in tapasin dependence may impact the strength of the immune responses by altering peptide repertoire size. In support of this model, we observed that individuals carrying HLA class I genotypes characterized by greater tapasin independence progress more slowly to AIDS and maintain lower viral loads, presumably due to increased breadth of peptide presentation. Thus, tapasin dependence level, like HLA zygosity, may serve as a means to restrict or expand breadth of the HLA-I peptide repertoire across humans, ultimately influencing immune responses to pathogens and vaccines

    Structural and regulatory diversity shape HLA-C protein expression levels

    Get PDF
    Expression of HLA-C varies widely across individuals in an allele-specific manner. This variation in expression can influence efficacy of the immune response, as shown for infectious and autoimmune diseases. MicroRNA binding partially influences differential HLA-C expression, but the additional contributing factors have remained undetermined. Here we use functional and structural analyses to demonstrate that HLA-C expression is modulated not just at the RNA level, but also at the protein level. Specifically, we show that variation in exons 2 and 3, which encode the α1/α2 domains, drives differential expression of HLA-C allomorphs at the cell surface by influencing the structure of the peptide-binding cleft and the diversity of peptides bound by the HLA-C molecules. Together with a phylogenetic analysis, these results highlight the diversity and long-term balancing selection of regulatory factors that modulate HLA-C expression

    The conundrum of nonclassical major histocompatibility complex genes.

    No full text

    Resolution of the HLA-DRB6 puzzle: a case of grafting a de novo-generated exon on an existing gene.

    No full text
    corecore