116 research outputs found

    Direct evidence for a functional role of HLA-DRB1 and -DRB3 gene products in the recognition of Dermatophagoides spp. (house dust mite) by helper T lymphocytes

    Get PDF
    The contribution of the HLA-DRB1, -B3, and -BS gene products in the recognition of Dermatophagoides spp. (house dust mite) by helper T cells Isolated from an atopic individual (HLA-DRw12, DR7; DRw52b) with perennial rhinitis was investigated. Using a panel of histocompatlble and histoincompatible accessory cells, the restriction specificity obtained for a long term T cell suggested that a component of the dust mite reactive repertoire recognized antigen in association with DRB3 gene products. Ollgonucleotide DNA typing of the presenting cell panel demonstrated a correlation between the DRw52b allele and T cell responsiveness. Murine fibroblasts expressing DRw52b, but not DRw52a or -c molecules, presented antigen to both the T cell line and cloned T cells (DE26) derived from the line, Indicating that the supertypic specificity DRw52b was able to restrict recognition of dust mite antigens. Additional T cell clones (DE9 and DE41) also isolated from the line were restricted by the products of the B1 gene locus (DRw12B1) as determined by murine fibroblasts transfected with the appropriate HLA-DR genes. Clone DE9 was degenerate in Its restriction specificity, also recognizing dust mite presented by accessory cells expressing the DR2 subtypes. Presentation by fibroblasts transfected with DRw12B1, DR2Dw2B5 genes and EBV-transformed B cell lines expressing DR2Dw21B1 and -B5 indicated that the functional site restricting recognition may be associated with residues 70 and 71 of the DR/3 chain helical wall of the antigen combining site. Furthermore, we have recently demonstrated that both T cell clones DE9 and DE26 induce allergen dependent IgE synthesis in vitro. Thus these results demonstrate directly that the DRB1, -B3, and -B5 gene products are functional in the restriction of T cell recognition of dust mite antigen

    Identification of novel oyster allergens using a combined transcriptomic and proteomic approach for improved component resolved diagnosis

    Get PDF
    Background: Increasing production and consumption of mollusc is associated with the rise in prevalence of mollusc allergy worldwide, currently ranging from 0.15% to 1.3% of the general population. However, the elucidation of mollusc allergens for better diagnostics still lags behind other seafood groups such as fish and crustacean. Genomic data have been utilized previously for improved identification of non-food allergens by performing similarity searching using the BLAST program. Based on the published genome of the Pacific oyster (Crassostrea gigas) we aimed to identify the complete potential oyster allergen repertoire using ioinformatics analysis, and to investigate identified protein allergenicity using a combination of immuno-chemical methods and proteomic analysis. Results: Ninety-five potential allergenic proteins of the Pacific oyster were discovered using in silico analyses. These proteins were of same protein family and had more than 50% amino acid identity with their homologous allergens. The allergenicity of these proteins was characterized using a combination of immunoassay and transcriptome-derived proteomics analyses. However The 2D-immunoblotting results showed only twenty two IgE-reactive spots in the raw extract of the Pacific oyster, and six spots in the heated extract. The identity of these IgE-reactive proteins was investigated by mass spectrometry. Sixteen allergens were identified, some with two or more isoforms. Conclusions: The combination of genomics coupled to proteomics and IgE-reactivity profiling is a powerful method for the identification of novel allergens from food sources. Using this combination approach we were able to expand the current knowledge on IgE-reactivity to various proteins of the Pacific oyster. These newly identified allergens and knowledge of their gene sequences will facilitate the development of improved component resolved diagnosis and future immunotherapy approach for oyster allergy

    Collagen-an important fish allergen for improved diagnosis

    Get PDF
    Background Fish collagen is widely used in medicine, cosmetics, and the food industry. However, its clinical relevance as an allergen is not fully appreciated. This is likely due to collagen insolubility in neutral aqueous solutions, leading to low abundance in commercially available in vitro and skin prick tests for fish allergy. Objective To investigate the relevance of fish collagen as an allergen in a large patient population (n = 101). Methods Acid-soluble collagen type I was extracted from muscle and skin of Atlantic salmon, barramundi, and yellowfin tuna. IgE binding to collagen was analyzed by ELISA for 101 fish-allergic patients. Collagen-sensitized patients' sera were tested for IgE binding to parvalbumin from the same fish species. IgE cross-linking was analyzed by rat basophil leukemia assay and basophil activation test. Protein identities were confirmed by mass spectrometry. Results Purified fish collagen contained type I α1 and α2 chains and their multimers. Twenty-one of 101 patients (21%) were sensitized to collagen. Eight collagen-sensitized patients demonstrated absence of parvalbumin-specific IgE to some fish species. Collagen induced functional IgE cross-linking, as shown by rat basophil leukemia assay performed using 6 patients' sera, and basophil activation test using fresh blood from 1 patient. Collagen type I α chains from barramundi and Atlantic salmon were registered at www.allergen.org as Lat c 6 and Sal s 6, respectively. Conclusions IgE sensitization and IgE cross-linking capacity of fish collagen were demonstrated in fish-allergic patients. Inclusion of relevant collagen allergens in routine diagnosis is indicated to improve the capacity to accurately diagnose fish allergy

    Optimal foreign borrowing: The impact of the planning horizon on the half and full debt cycle

    Get PDF
    Shrimp is one of the predominant causes of food allergy among adults, often presenting with severe reactions. Current in vitro diagnostics are based on quantification of patient specific-IgE (sIgE) to shrimp extract. Tropomyosin is the known major shrimp allergen, but IgE sensitisation to other allergens is poorly characterised. In this study, the binding of IgE to various shrimp allergens, additional to tropomyosin, was investigated using sera from 21 subjects who had clinical reactions to one or more shellfish species. Total shrimp-sIgE was quantified using ImmunoCAP, while allergen-sIgEs were quantified using immunoblotting and mass spectrometry, and immuno-PCR to recombinant shrimp tropomyosin. Sixty-two percent of subjects (13/21) were positive to shrimp by ImmunoCAP. IgE from 43% of subjects (9/21) bound tropomyosin, while an additional 29% of subjects (6/21) demonstrated IgE-binding solely to other shrimp allergens, including sarcoplasmic calcium-binding protein, arginine kinase and hemocyanin. Furthermore, IgE sensitisation to other shrimp allergens was demonstrated in 50% of subjects (4/8) who were ImmunoCAP negative. The lack of standardised shrimp allergens and inadequacy of current extracts for shrimp allergy diagnosis is highlighted by this study. Comprehensive knowledge of less studied allergens and their inclusion in component-resolved diagnostics will improve diagnostic accuracy, benefitting the wider population suffering from shellfish allergy

    Vaccines and allergic reactions:The past, the current COVID-19 pandemic, and future perspectives

    Get PDF
    Vaccines are essential public health tools with a favorable safety profile and prophylactic effectiveness that have historically played significant roles in reducing infectious disease burden in populations, when the majority of individuals are vaccinated. The COVID-19 vaccines are expected to have similar positive impacts on health across the globe. While serious allergic reactions to vaccines are rare, their underlying mechanisms and implications for clinical management should be considered to provide individuals with the safest care possible. In this review, we provide an overview of different types of allergic adverse reactions that can potentially occur after vaccination and individual vaccine components capable of causing the allergic adverse reactions. We present the incidence of allergic adverse reactions during clinical studies and through post-authorization and post-marketing surveillance and provide plausible causes of these reactions based on potential allergenic components present in several common vaccines. Additionally, we review implications for individual diagnosis and management and vaccine manufacturing overall. Finally, we suggest areas for future research.</p

    Vaccines and allergic reactions:The past, the current COVID-19 pandemic, and future perspectives

    Get PDF
    Vaccines are essential public health tools with a favorable safety profile and prophylactic effectiveness that have historically played significant roles in reducing infectious disease burden in populations, when the majority of individuals are vaccinated. The COVID-19 vaccines are expected to have similar positive impacts on health across the globe. While serious allergic reactions to vaccines are rare, their underlying mechanisms and implications for clinical management should be considered to provide individuals with the safest care possible. In this review, we provide an overview of different types of allergic adverse reactions that can potentially occur after vaccination and individual vaccine components capable of causing the allergic adverse reactions. We present the incidence of allergic adverse reactions during clinical studies and through post-authorization and post-marketing surveillance and provide plausible causes of these reactions based on potential allergenic components present in several common vaccines. Additionally, we review implications for individual diagnosis and management and vaccine manufacturing overall. Finally, we suggest areas for future research.</p

    Validity, reliability, and responsiveness of daily monitoring visual analog scales in MASK‐air®

    Get PDF
    Background: MASK-air® is an app that supports allergic rhinitis patients in disease control. Users register daily allergy symptoms and their impact on activities using visual analog scales (VASs). We aimed to assess the concurrent validity, reliability, and responsiveness of these daily VASs. Methods: Daily monitoring VAS data were assessed in MASK-air® users with allergic rhinitis. Concurrent validity was assessed by correlating daily VAS values with those of the EuroQol-5 Dimensions (EQ-5D) VAS, the Control of Allergic Rhinitis and Asthma Test (CARAT) score, and the Work Productivity and Activity Impairment Allergic Specific (WPAI-AS) Questionnaire (work and activity impairment scores). Intra-rater reliability was assessed in users providing multiple daily VASs within the same day. Test–retest reliability was tested in clinically stable users, as defined by the EQ-5D VAS, CARAT, or “VAS Work” (i.e., VAS assessing the impact of allergy on work). Responsiveness was determined in users with two consecutive measurements of EQ-5D-VAS or “VAS Work” indicating clinical change. Results: A total of 17,780 MASK-air® users, with 317,176 VAS days, were assessed. Concurrent validity was moderate–high (Spearman correlation coefficient range: 0.437–0.716). Intra-rater reliability intraclass correlation coefficients (ICCs) ranged between 0.870 (VAS assessing global allergy symptoms) and 0.937 (VAS assessing allergy symptoms on sleep). Test–retest reliability ICCs ranged between 0.604 and 0.878—“VAS Work” and “VAS asthma” presented the highest ICCs. Moderate/large responsiveness effect sizes were observed—the sleep VAS was associated with lower responsiveness, while the global allergy symptoms VAS demonstrated higher responsiveness. Conclusion: In MASK-air®, daily monitoring VASs have high intra-rater reliability and moderate–high validity, reliability, and responsiveness, pointing to a reliable measure of symptom loads

    Allergic Rhinitis and its Impact on Asthma (ARIA) Guidelines - 2016 Revision

    Get PDF
    BACKGROUND: Allergic rhinitis (AR) affects 10% to 40% of the population. It reduces quality of life and school and work performance and is a frequent reason for office visits in general practice. Medical costs are large, but avoidable costs associated with lost work productivity are even larger than those incurred by asthma. New evidence has accumulated since the last revision of the Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines in 2010, prompting its update. OBJECTIVE: We sought to provide a targeted update of the ARIA guidelines. METHODS: The ARIA guideline panel identified new clinical questions and selected questions requiring an update. We performed systematic reviews of health effects and the evidence about patients' values and preferences and resource requirements (up to June 2016). We followed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence-to-decision frameworks to develop recommendations. RESULTS: The 2016 revision of the ARIA guidelines provides both updated and new recommendations about the pharmacologic treatment of AR. Specifically, it addresses the relative merits of using oral H1-antihistamines, intranasal H1-antihistamines, intranasal corticosteroids, and leukotriene receptor antagonists either alone or in combination. The ARIA guideline panel provides specific recommendations for the choice of treatment and the rationale for the choice and discusses specific considerations that clinicians and patients might want to review to choose the management most appropriate for an individual patient. CONCLUSIONS: Appropriate treatment of AR might improve patients' quality of life and school and work productivity. ARIA recommendations support patients, their caregivers, and health care providers in choosing the optimal treatment
    corecore