1,457 research outputs found

    All-Optical Production of a Degenerate Fermi Gas

    Full text link
    We achieve degeneracy in a mixture of the two lowest hyperfine states of 6^6Li by direct evaporation in a CO2_2 laser trap, yielding the first all-optically produced degenerate Fermi gas. More than 10510^5 atoms are confined at temperatures below 4μ4 \muK at full trap depth, where the Fermi temperature for each state is 8μ8 \muK. This degenerate two-component mixture is ideal for exploring mechanisms of superconductivity ranging from Cooper pairing to Bose condensation of strongly bound pairs.Comment: 4 pgs RevTeX with 2 eps figs, to be published in Phys. Rev. Let

    The ecology of seamounts: structure, function, and human impacts.

    Get PDF
    In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research

    Neutrophil gelatinase-associated lipocalin: its response to hypoxia and association with acute mountain sickness.

    Get PDF
    Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 hours of normobaric hypoxia (FiO2 11.6%) and on two trekking expeditions (n = 52) to over 5000 m. NGAL did not change with exercise at SL or following normobaric hypoxia. During the trekking expeditions NGAL levels (ng/ml, mean ± sd, range) rose significantly (P < 0.001) from 68 ± 14 (60-102) at 1300 m to 183 ± 107 (65-519); 143 ± 66 (60-315) and 150 ± 71 (60-357) at 3400 m, 4270 m and 5150 m respectively. At 5150 m there was a significant difference in NGAL between those with severe AMS (n = 7), mild AMS (n = 16) or no AMS (n = 23): 201 ± 34 versus 171 ± 19 versus 124 ± 12 respectively (P = 0.009 for severe versus no AMS; P = 0.026 for mild versus no AMS). In summary, NGAL rises in response to prolonged hypobaric hypoxia and demonstrates a relationship to the presence and severity of AMS

    Creation of ultracold molecules from a Fermi gas of atoms

    Full text link
    Since the realization of Bose-Einstein condensates (BEC) in atomic gases an experimental challenge has been the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, atoms in a BEC have been coupled to electronic ground-state molecules through photoassociation as well as through a magnetic-field Feshbach resonance. The availability of atomic Fermi gases provides the exciting prospect of coupling fermionic atoms to bosonic molecules, and thus altering the quantum statistics of the system. This Fermi-Bose coupling is closely related to the pairing mechanism for a novel fermionic superfluid proposed to occur near a Feshbach resonance. Here we report the creation and quantitative characterization of exotic, ultracold 40^{40}K2_2 molecules. Starting with a quantum degenerate Fermi gas of atoms at T < 150 nanoKelvin we scan over a Feshbach resonance to adiabatically create over a quarter million trapped molecules, which we can convert back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning from the Feshbach resonance and can be varied over a wide range. We directly detect these weakly bound molecules through rf photodissociation spectra that probe the molecular wavefunction and yield binding energies that are consistent with theory

    Ultrastable CO2 Laser Trapping of Lithium Fermions

    Get PDF
    We demonstrate an ultrastable CO2 laser trap that provides tight confinement of neutral atoms with negligible optical scattering and minimal laser-noise- induced heating. Using this method, fermionic 6Li atoms are stored in a 0.4 mK deep well with a 1/e trap lifetime of 300 sec, consistent with a background pressure of 10^(-11) Torr. To our knowledge, this is the longest storage time ever achieved with an all-optical trap, comparable to the best reported magnetic traps.Comment: 4 pages using REVTeX, 1 eps figur

    Resonant control of elastic collisions in an optically trapped Fermi gas of atoms

    Full text link
    We have loaded an ultracold gas of fermionic atoms into a far off resonance optical dipole trap and precisely controlled the spin composition of the trapped gas. We have measured a magnetic-field Feshbach resonance between atoms in the two lowest energy spin-states, |9/2, -9/2> and |9/2, -7/2>. The resonance peaks at a magnetic field of 201.5 plus or minus 1.4 G and has a width of 8.0 plus or minus 1.1 G. Using this resonance we have changed the elastic collision cross section in the gas by nearly 3 orders of magnitude.Comment: 4 pages, 3 figure

    All Optical Formation of an Atomic Bose-Einstein Condensate

    Full text link
    We have created a Bose-Einstein condensate of 87Rb atoms directly in an optical trap. We employ a quasi-electrostatic dipole force trap formed by two crossed CO_2 laser beams. Loading directly from a sub-doppler laser-cooled cloud of atoms results in initial phase space densities of ~1/200. Evaporatively cooling through the BEC transition is achieved by lowering the power in the trapping beams over ~ 2 s. The resulting condensates are F=1 spinors with 3.5 x 10^4 atoms distributed between the m_F = (-1,0,1) states.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
    corecore