30 research outputs found

    Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin-2

    Get PDF
    New Findings: What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg−1) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg−1) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-γ-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated

    Inspiratory pressure-generating capacity is preserved during ventilatory and non-ventilatory behaviours in young dystrophic mdx mice despite profound diaphragm muscle weakness

    Get PDF
    Diaphragm dysfunction is recognized in the mdx mouse model of muscular dystrophy, however there is a paucity of information concerning the neural control of dystrophic respiratory muscles. In young adult (8 weeks of age) male wild‐type and mdx mice, we assessed ventilatory capacity, neural activation of the diaphragm and external intercostal (EIC) muscles and inspiratory pressure‐generating capacity during ventilatory and non‐ventilatory behaviours. We hypothesized that respiratory muscle weakness is associated with impaired peak inspiratory pressure‐generating capacity in mdx mice. Ventilatory responsiveness to hypercapnic hypoxia was determined in conscious mice by whole‐body plethysmography. Diaphragm isometric and isotonic contractile properties were determined ex vivo. In anaesthetized mice, thoracic oesophageal pressure, and diaphragm and EIC electromyogram (EMG) activities were recorded during baseline conditions and sustained tracheal occlusion for 30–40s. Despite substantial diaphragm weakness, mdx mice retain the capacity to enhance ventilation during hypercapnic hypoxia. Peak volume‐ and flow‐related measures were also maintained in anaesthetized, vagotomized mdx mice. Peak inspiratory pressure was remarkably well preserved during chemoactivated breathing, augmented breaths, and maximal sustained efforts during airway obstruction in mdx mice. Diaphragm and EIC EMG activities were lower during airway obstruction in mdx compared with wild‐type mice. We conclude that ventilatory capacity is preserved in young mdx mice. Despite profound respiratory muscle weakness and lower diaphragm and EIC EMG activities during high demand in mdx mice, peak inspiratory pressure is preserved, revealing adequate compensation in support of respiratory system performance, at least early in dystrophic disease. We suggest that a progressive loss of compensation during advancing disease, combined with diaphragm dysfunction, underpins the development of respiratory system morbidity in dystrophic diseases

    N-acetylcysteine decreases fibrosis and increases force-generating capacity of mdx diaphragm

    Get PDF
    Respiratory muscle weakness occurs due to dystrophin deficiency in Duchenne muscular dystrophy (DMD). The mdx mouse model of DMD shows evidence of impaired respiratory muscle performance with attendant inflammation and oxidative stress. We examined the effects of N-acetylcysteine (NAC) supplementation on respiratory system performance in mdx mice. Eight-week-old male wild type (n = 10) and mdx (n = 20) mice were studied; a subset of mdx (n = 10) received 1% NAC in the drinking water for 14 days. We assessed breathing, diaphragm, and external intercostal electromyogram (EMG) activities and inspiratory pressure during ventilatory and non-ventilatory behaviours. Diaphragm muscle structure and function, cytokine concentrations, glutathione status, and mRNA expression were determined. Diaphragm force-generating capacity was impaired in mdx compared with wild type. Diaphragm muscle remodelling was observed in mdx, characterized by increased muscle fibrosis, immune cell infiltration, and central myonucleation. NAC supplementation rescued mdx diaphragm function. Collagen content and immune cell infiltration were decreased in mdx + NAC compared with mdx diaphragms. The cytokines IL-1β, IL-6 and KC/GRO were increased in mdx plasma and diaphragm compared with wild type; NAC decreased systemic IL-1β and KC/GRO concentrations in mdx mice. We reveal that NAC treatment improved mdx diaphragm force-generating capacity associated with beneficial anti-inflammatory and anti-fibrotic effects. These data support the potential use of NAC as an adjunctive therapy in human dystrophinopathies

    НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ОБРУДОВАНИЯ ДЛЯ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ ТОНКОДИСПЕРСНыХ МАТЕРИАЛОВ

    No full text
    Проблема и ее связь с научными и практическими задачами. В связи с тем, что в поступающем на обогатительные фабрики сырье содержится до 30% ма-териала крупностью менее 1 мм, роль процесса флотации существенно возрас-тает. Этому способствует и возможность создания достаточно простых замкну-тых водно-шламовых схем, включающих флотацию в качестве основного эле-мента очистки оборотных вод. Многими исследованиями, которые проводились ранее и продолжают выполняться и в настоящее время, установлены направле-ния совершенствования этого достаточно сложного физико-химического про-цесс

    Development and Validation of a Multiplex Microsphere-Based Assay for Detection of Domestic Cat (Felis catus) Cytokines ▿

    No full text
    Cytokines are essential signaling molecules that mediate the innate immune response, and therefore their presence can be of diagnostic, prognostic, and pathogenic significance. Microsphere-based immunoassays allow rapid and accurate evaluation of cytokine levels in several species, including humans, dogs, and mice; however, technology to evaluate domestic cat (Felis catus) cytokines has been limited to single-analyte enzyme-linked immunosorbent assays (ELISAs). Microsphere-based immunoassays provide an attractive alternative technology for detecting and quantifying multiple analytes in a single assay using as little as 50 μl of sample. We describe the development and validation of a microsphere-based assay for three commonly analyzed domestic cat cytokines (gamma interferon, interleukin-10, and interleukin-12/interleukin-23 p40) using reagents from commercially available ELISAs. The assay was optimized for capture and detection antibody concentrations, streptavidin-phycoerythrin concentration, and number of microspheres. The validated lower and upper quantitation limits were 31 and 1,000 pg/ml for gamma interferon, 63 and 2,000 pg/ml for interleukin-10, and 39 and 625 pg/ml for interleukin-12/interleukin-23 p40. Cytokine concentrations in peripheral blood mononuclear cell supernatants were measured, and results obtained by the microsphere assay were correlated with values obtained with commercially available ELISA kits. This technology is a convenient and reproducible assay to evaluate domestic cat cytokine responses elicited by a variety of diseases
    corecore