504 research outputs found

    Mixed effects of elevated pCO2 on fertilisation, larval and juvenile development and adult responses in the mobile subtidal scallop Mimachlamys asperrima (Lamarck, 1819).

    Full text link
    Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels

    Reduced performance of native infauna following recruitment to a habitat-forming invasive marine alga

    Full text link
    Despite well-documented negative impacts of invasive species on native biota, evidence for the facilitation of native organisms, particularly by habitat-forming invasive species, is increasing. However, most of these studies are conducted at the population or community level, and we know little about the individual fitness consequences of recruitment to habitat-forming invasive species and, consequently, whether recruitment to these habitats is adaptive. We determined the consequences of recruitment to the invasive green alga Caulerpa taxifolia on the native soft-sediment bivalve Anadara trapezia and nearby unvegetated sediment. Initially, we documented the growth and survivorship of A. trapezia following a natural recruitment event, to which recruitment to C. taxifolia was very high. After 12 months, few clams remained in either habitat, and those that remained showed little growth. Experimental manipulations of recruits demonstrated that all performance measures (survivorship, growth and condition) were significantly reduced in C. taxifolia sediments compared to unvegetated sediments. Exploration of potential mechanisms responsible for the reduced performance in C. taxifolia sediments showed that water flow and water column dissolved oxygen (DO) were significantly reduced under the canopy of C. taxifolia and that sediment anoxia was significantly higher and sediment sulphides greater in C. taxifolia sediments. However, phytoplankton abundance (an indicator of food supply) was significantly higher in C. taxifolia sediments than in unvegetated ones. Our results demonstrate that recruitment of native species to habitat-forming invasive species can reduce growth, condition and survivorship and that studies conducted at the community level may lead to erroneous conclusions about the impacts of invaders and should include studies on life-history traits, particularly juveniles. © 2008 Springer-Verlag

    A controlled trial of natalizumab for relapsing multiple sclerosis.

    Get PDF
    Background: In patients with multiple sclerosis, inflammatory brain lesions appear to arise from autoimmune responses involving activated lymphocytes and monocytes. The glycoprotein (alpha)(sub 4) integrin is expressed on the surface of these cells and plays a critical part in their adhesion to the vascular endothelium and migration into the parenchyma. Natalizumab is an (alpha)(sub 4) integrin antagonist that reduced the development of brain lesions in experimental models and in a preliminary study of patients with multiple sclerosis.Methods: In a randomized, double-blind trial, we randomly assigned a total of 213 patients with relapsing-remitting or relapsing secondary progressive multiple sclerosis to receive 3 mg of intravenous natalizumab per kilogram of body weight (68 patients), 6 mg per kilogram (74 patients), or placebo (71 patients) every 28 days for 6 months. The primary end point was the number of new brain lesions on monthly gadolinium-enhanced magnetic resonance imaging during the six-month treatment period. Clinical outcomes included relapses and self-reported well-being.Results: There were marked reductions in the mean number of new lesions in both natalizumab groups: 9.6 per patient in the placebo group, as compared with 0.7 in the group given 3 mg of natalizumab per kilogram (P<0.001) and 1.1 in the group given 6 mg of natalizumab per kilogram (P<0.001). Twenty-seven patients in the placebo group had relapses, as compared with 13 in the group given 3 mg of natalizumab per kilogram (P=0.02) and 14 in the group given 6 mg of natalizumab per kilogram (P=0.02). The placebo group reported a slight worsening in well-being (a mean decrease of 1.38 mm on a 100-mm visual-analogue scale), whereas the natalizumab groups reported an improvement (mean increase of 9.49 mm in the group given 3 mg of natalizumab per kilogram and 6.21 mm in the group given 6 mg of natalizumab per kilogram).Conclusions: In a placebo-controlled trial, treatment with natalizumab led to fewer inflammatory brain lesions and fewer relapses over a six-month period in patients with relapsing multiple sclerosis

    Microbiomes of an oyster are shaped by metabolism and environment.

    Full text link
    Microbiomes can both influence and be influenced by metabolism, but this relationship remains unexplored for invertebrates. We examined the relationship between microbiome and metabolism in response to climate change using oysters as a model marine invertebrate. Oysters form economies and ecosystems across the globe, yet are vulnerable to climate change. Nine genetic lineages of the oyster Saccostrea glomerata were exposed to ambient and elevated temperature and PCO2 treatments. The metabolic rate (MR) and metabolic by-products of extracellular pH and CO2 were measured. The oyster-associated bacterial community in haemolymph was characterised using 16 s rRNA gene sequencing. We found a significant negative relationship between MR and bacterial richness. Bacterial community composition was also significantly influenced by MR, extracellular CO2 and extracellular pH. The effects of extracellular CO2 depended on genotype, and the effects of extracellular pH depended on CO2 and temperature treatments. Changes in MR aligned with a shift in the relative abundance of 152 Amplicon Sequencing Variants (ASVs), with 113 negatively correlated with MR. Some spirochaete ASVs showed positive relationships with MR. We have identified a clear relationship between host metabolism and the microbiome in oysters. Altering this relationship will likely have consequences for the 12 billion USD oyster economy

    Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations

    Get PDF
    Heart failure (HF) is a complex clinical syndrome resulting from any structural or functional cardiac disorder impairing the ability of the ventricles to fill with or eject blood. The approach to pharmacologic treatment has become a combined preventive and symptomatic management strategy. Ideally, treatment should be initiated in patients at risk, preventing disease progression. In patients who have progressed to symptomatic left ventricular dysfunction, certain therapies have been demonstrated to improve survival, decrease hospitalizations, and reduce symptoms. The mainstay therapies are angiotensin-converting enzyme (ACE) inhibitors and beta-blockers (bisoprolol, carvedilol, and metoprolol XL/CR), with diuretics to control fluid balance. In patients who cannot tolerate ACE inhibitors because of angioedema or severe cough, valsartan can be substituted. Valsartan should not be added in patients already taking an ACE inhibitor and a beta-blocker. Spironolactone is recommended in patients who have New York Heart Association (NYHA) class III to IV symptoms despite maximal therapies with ACE inhibitors, beta-blockers, diuretics, and digoxin. Low-dose digoxin, yielding a serum concentration <1 ng/mL can be added to improve symptoms and, possibly, mortality. The combination of hydralazine and isosorbide dinitrate might be useful in patients (especially in African Americans) who cannot tolerate ACE inhibitors or valsartan because of hypotension or renal dysfunction. Calcium antagonists, with the exception of amlodipine, oral or intravenous inotropes, and vasodilators, should be avoided in HF with reduced systolic function. Amiodarone should be used only if patients have a history of sudden death, or a history of ventricular fibrillation or sustained ventricular tachycardia, and should be used in conjunction with an implantable defibrillator [corrected]. Finally, anticoagulation is recommended only in patients who have concomitant atrial fibrillation or a previous history of cerebral or systemic emboli

    The 17th EFMC Short Course on Medicinal Chemistry on Small Molecule Protein Degraders

    Get PDF
    The 17 th EFMC Short Course on Medicinal Chemistry took place April 23–26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.</p

    Adult exposure to ocean acidification and warming remains beneficial for oyster larvae following starvation

    Full text link
    Climate change is expected to warm and acidify oceans and alter the phenology of phytoplankton, creating a mismatch between larvae and their food. Transgenerational plasticity (TGP) may allow marine species to acclimate to climate change; however, it is expected that this may come with elevated energetic demands. This study used the oysters, Saccostrea glomerata and Crassostrea gigas, to test the effects of adult parental exposure to elevated pCO2 and temperature on larvae during starvation and recovery. It was anticipated that beneficial effects of TGP will be limited when larvae oyster are starved. Transgenerational responses and lipid reserves of larvae were measured for 2 weeks. Larvae of C. gigas and S. glomerata from parents exposed to elevated pCO2 had greater survival when exposed to elevated CO2, but this differed between species and temperature. For S. glomerata, survival of larvae was greatest when the conditions experienced by larvae matched the condition of their parents. For C. gigas, survival of larvae was greater when parents and larvae were exposed to elevated pCO2. Larvae of both species used lipids when starved. The total lipid content was dependent on parental exposure and temperature. Against expectations, the beneficial TGP responses of larvae remained, despite starvation

    7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis.

    Get PDF
    Within a backup program for the clinical investigational agent pretomanid (PA-824), scaffold hopping from delamanid inspired the discovery of a novel class of potent antitubercular agents that unexpectedly possessed notable utility against the kinetoplastid disease visceral leishmaniasis (VL). Following the identification of delamanid analogue DNDI-VL-2098 as a VL preclinical candidate, this structurally related 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazine class was further explored, seeking efficacious backup compounds with improved solubility and safety. Commencing with a biphenyl lead, bioisosteres formed by replacing one phenyl by pyridine or pyrimidine showed improved solubility and potency, whereas more hydrophilic side chains reduced VL activity. In a Leishmania donovani mouse model, two racemic phenylpyridines (71 and 93) were superior, with the former providing &gt;99% inhibition at 12.5 mg/kg (b.i.d., orally) in the Leishmania infantum hamster model. Overall, the 7R enantiomer of 71 (79) displayed more optimal efficacy, pharmacokinetics, and safety, leading to its selection as the preferred development candidate

    Safety during the monitoring of diabetic patients: trial teaching course on health professionals and diabetics - SEGUDIAB study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Safety for diabetic patients means providing the most suitable treatment for each type of diabetic in order to improve monitoring and to prevent the adverse effects of drugs and complications arising from the disease. The aim of this study is to analyze the effect of imparting educational interventions to health professionals regarding the safety of patients with Diabetes Mellitus (DM).</p> <p>Methods</p> <p><it>Design</it>: A cluster randomized trial with a control group.</p> <p><it>Setting and sample</it>: The study analyzed ten primary healthcare centres (PHC) covering approximately 150,000 inhabitants. Two groups of 5 PHC were selected on the basis of their geographic location (urban, semi-urban and rural), their socio-economic status and the size of their PHC, The interventions and control groups were assigned at random. The study uses computerized patient records to individually assess subjects aged 45 to 75 diagnosed with type 1 and type 2 DM, who met the inclusion conditions and who had the variables of particular interest to the study.</p> <p><it>Trial</it>: The educational interventions consisted of a standardized teaching course aimed at doctors and nurses. The course lasted 6 hours and was split into three 2-hour blocks with subsequent monthly refresher courses.</p> <p><it>Measurement</it>: For the health professionals, the study used the <it>Diabetes Attitude Scale </it>(DAS-3) to assess their attitudes and motivation when monitoring diabetes. For the patients, the study assessed factors related to their degree of control over the disease at onset, 6, 12 and 24 months.</p> <p><it>Main variables</it>: levels of HbA1c.</p> <p><it>Analysis</it>: The study analyzed the effect of the educational interventions both on the attitudes and motivations of health professionals and on the degree of control over the diabetes in both groups.</p> <p>Discussion</p> <p>Imparting educational interventions to health professionals would improve the monitoring of diabetic patients. The most effective model involves imparting the course to both doctors and nurses. However, these models have not been tested on our Spanish population within the framework of primary healthcare.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01087541">NCT01087541</a></p

    Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure

    Get PDF
    Traumatic brain injury (TBI) is a risk factor for the later development of neurodegenerative diseases that may have various underlying pathologies. Chronic traumatic encephalopathy (CTE) in particular is associated with repetitive mild TBI (mTBI) and is characterized pathologically by aggregation of hyperphosphorylated tau into neurofibrillary tangles (NFTs). CTE may be suspected when behavior, cognition, and/or memory deteriorate following repetitive mTBI. Exposure to blast overpressure from improvised explosive devices (IEDs) has been implicated as a potential antecedent for CTE amongst Iraq and Afghanistan Warfighters. In this study, we identified biomarker signatures in rats exposed to repetitive low-level blast that develop chronic anxiety-related traits and in human veterans exposed to IED blasts in theater with behavioral, cognitive, and/or memory complaints. Rats exposed to repetitive low-level blasts accumulated abnormal hyperphosphorylated tau in neuronal perikarya and perivascular astroglial processes. Using positron emission tomography (PET) and the [18F]AV1451 (flortaucipir) tau ligand, we found that five of 10 veterans exhibited excessive retention of [18F]AV1451 at the white/gray matter junction in frontal, parietal, and temporal brain regions, a typical localization of CTE tauopathy. We also observed elevated levels of neurofilament light (NfL) chain protein in the plasma of veterans displaying excess [18F]AV1451 retention. These findings suggest an association linking blast injury, tauopathy, and neuronal injury. Further study is required to determine whether clinical, neuroimaging, and/or fluid biomarker signatures can improve the diagnosis of long-term neuropsychiatric sequelae of mTBI
    • …
    corecore