97 research outputs found
The role of fluence in determining the response of thin molybdenum films to ultrashort laser irradiation; from laser-induced crystallization to ablation via photomechanical ablation and nanostructure formation
The selective processing of Mo at low temperatures is challenging, especially in advanced manufacturing on flexible and heat-sensitive substrate due to its higher melting temperature. The key role of fluence in determining the response of thin Mo films to ultrashort laser irradiation is considered in this study. At low fluences, the electrical properties of Mo are enhanced by a localized laser-induced crystallization mechanism; the electrical mobility of Mo is increased and the contact resistance between Mo-Si interface is reduced. At higher fluences, selective patterning of Mo proceeds without impacting the Si layer and the threshold fluence for ablation increases with the film thickness of Mo. Two fluence dependent ablation mechanisms are observed depending on the Mo film thickness. For thin films of thicknesses 20 nm and 40 nm, selective ablation proceeds only by a photothermal interaction. For 60 nm and 80 nm thick films, selective ablation proceeds by both photomechanical and photothermal interactions at two-separate higher fluence regimes, respectively. Interestingly, between these two ablation regimes, a non-ablative nanostructuring regime occurs. The study provides a concise overview of the process window for implementing the laser-induced modifications to Mo layers with minimal impact to the substrate using single wavelength ultrashort pulse laser
Proteomics Strategy for Identifying Candidate Bioactive Proteins in Complex Mixtures: Application to the Platelet Releasate
Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples
Ultrashort laser sintering of printed silver nanoparticles on thin, flexible, and porous substrates
The fabrication of low-cost and mechanically robust flexible electronic patterns has increasingly gained attention due to their growing applications in flexible displays, touch screen panels, medical devices, and solar cells. Such applications require cost-effective deposition of metals in a well-controlled manner potentially using nanoparticles (NPs). The presence of solvent and precursors in NP based inks impacts the electrical conductivity of the printed pattern and a post-processing heating step is typically performed to restore the electrical properties and structure of the material. We report printing with picolitre droplet volumes of silver (Ag) NPs on flexible substrates using an acoustic microdroplet dispenser. The low-cost, controlled deposition of Ag ink is performed at room temperature on photopaper, polyimide and clear polyimide substrates. A localized, ultrashort pulsed laser with minimal heat affected zone is employed to sinter printed Ag patterns. For comparison, oven sintering is performed, and the results are analysed with scanning electron microscopy, four-point probe and Hall measurements. The femtosecond laser sintering revealed highly organized, connected nanostructure that is not achievable with oven heating. A significant decrease in sheet resistance, up to 93% in Ag NPs on clear polyimide confirms the laser sintering improves the connectivity of the printed film and as a result, the electrical properties are enhanced. The surface morphology attained by the laser sintering process is interpreted to be due to a joining of NPs as a result of a solid-state diffusion process in the near surface region of NPs
Femtosecond laser assisted crystallization of gold thin films.
We propose a novel low temperature annealing method for selective crystallization of gold thin films. Our method is based on a non-melt process using highly overlapped ultrashort laser pulses at a fluence below the damage threshold. Three different wavelengths of a femtosecond laser with the fundamental (1030 nm), second (515 nm) and third (343 nm) harmonic are used to crystallize 18-nm and 39-nm thick room temperature deposited gold thin films on a quartz substrate. Comparison of laser wavelengths confirms that improvements in electrical conductivity up to 40% are achievable for 18-nm gold film when treated with the 515-nm laser, and the 343-nm laser was found to be more effective in crystallizing 39-nm gold films with 29% improvement in the crystallinity. A two-temperature model provides an insight into ultrashort laser interactions with gold thin films and predicts that applied fluence was insufficient to cause melting of gold films. The simulation results suggest that non-equilibrium energy transfer between electrons and lattice leads to a solid-state and melt-free crystallization process. The proposed low fluence femtosecond laser processing method offers a possible solution for a melt-free thin film crystallization for wide industrial applications
Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous \u27knockout\u27 of the schizophrenia risk gene neuregulin-1.
Clinical genetic studies have implicated neuregulin-1 [NRG1] as a leading susceptibility gene for schizophrenia. NRG1 is known to play a significant role in the developing brain, which is consistent with the prevailing neurodevelopmental model of schizophrenia. Thus, the emotional and social phenotype of adult mice with heterozygous \u27knockout\u27 of transmembrane [TM]-domain NRG1 was examined further in both sexes. Emotional/anxiety-related behaviour was assessed using the elevated plus-maze and the light-dark test. Social behaviour was examined in terms of dyadic interactions between NRG1 mutants and an unfamiliar C57BL6 conspecific in a novel environment. There was no effect of NRG1 genotype on performance in either test of emotionality/anxiety. However, previous reports of hyperactivity in NRG1 mutants were confirmed in both paradigms. In the test of social interaction, aggressive following was increased in NRG1 mutants of both sexes, together with an increase in walkovers in female mutants. These findings elaborate the specificity of the NRG1 phenotype for the social rather than the emotional/anxiety-related domain. They indicate that NRG1 is involved in the regulation of reciprocal social interaction behaviour and thus suggest a putative role for NRG1 in a schizophrenia-related endophenotype
Improvement of electrical properties of ITO thin films by melt-free ultra-short laser crystallization
We describe a novel solid state crystallisation method for optimising a thin film transparent
conductive oxide when deposited on flexible polymer substrates. The method is based on
ultra-short non-thermal laser sintering of indium tin oxide (ITO) thin films. In this study, we
used commercial ITO thin films deposited on a flexible polyethylene terephthalate substrate
with a relatively low melting temperature compared with ITO on glass. We demonstrate the use
of laser scanning with high pulse overlapping at fluences seven times less than the threshold
required for melting/damage of ITO. The results confirm greater than four times enhancement in
the mobility of charge carriers of ITO thin films after laser scanning and sheet resistance can be
reduced up to 25%. There is no reduction in optical transparency observed in laser treated
samples. Surface morphology and x-ray diffraction analyses confirm the improvement in
crystallite sizes by laser sintering, resulting in a greater than 37% increase in grain size due to
enhanced crystallization. Comparison of experimental and simulation based on a delayed two
temperature model confirms that ITO thin film crystallization occurred at about one-third of the
melting temperature of ITO
Maternal antibiotic administration during a critical developmental window has enduring neurobehavioural effects in offspring mice
Rates of perinatal maternal antibiotic use have increased in recent years linked to prophylactic antibiotic use following Caesarean section delivery. This antibiotic use is necessary and beneficial in the short-term; however, long-term consequences on brain and behaviour have not been studied in detail. Here, we endeavoured to determine whether maternal administration of antibiotics during a critical window of development in early life has lasting effects on brain and behaviour in offspring mice. To this end we studied two different antibiotic preparations (single administration of Phenoxymethylpenicillin at 31 mg/kg/day; and a cocktail consisting of, ampicillin 1 mg/mL; vancomycin 0.5 mg/mL; metronidazole 1 mg/mL; ciprofloxacin 0.2 mg/mL and imipenem 0.25 mg/mL). It was observed that early life exposure to maternal antibiotics led to persistent alterations in anxiety, sociability and cognitive behaviours. These effects in general were greater in animals treated with the broad-spectrum antibiotic cocktail compared to a single antibiotic with the exception of deficits in social recognition which were more robustly observed in Penicillin V exposed animals. Given the prevalence of maternal antibiotic use, our findings have potentially significant translational relevance, particularly considering the implications on infant health during this critical period and into later life
Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats
peer-reviewedBackground
Evidence is accruing to suggest that microbiota-gut-brain signalling plays a regulatory role in cardiorespiratory physiology. Chronic intermittent hypoxia (CIH), modelling human sleep apnoea, affects gut microbiota composition and elicits cardiorespiratory morbidity. We investigated if treatment with prebiotics ameliorates cardiorespiratory dysfunction in CIH-exposed rats.
Methods
Adult male rats were exposed to CIH (96 cycles/day, 6.0% O2 at nadir) for 14 consecutive days with and without prebiotic supplementation (fructo- and galacto-oligosaccharides) beginning two weeks prior to gas exposures.
Findings
CIH increased apnoea index and caused hypertension. CIH exposure had modest effects on the gut microbiota, decreasing the relative abundance of Lactobacilli species, but had no effect on microbial functional characteristics. Faecal short-chain fatty acid (SCFA) concentrations, plasma and brainstem pro-inflammatory cytokine concentrations and brainstem neurochemistry were unaffected by exposure to CIH. Prebiotic administration modulated gut microbiota composition and diversity, altering gut-metabolic (GMMs) and gut-brain (GBMs) modules and increased faecal acetic and propionic acid concentrations, but did not prevent adverse CIH-induced cardiorespiratory phenotypes.
Interpretation
CIH-induced cardiorespiratory dysfunction is not dependant upon changes in microbial functional characteristics and decreased faecal SCFA concentrations. Prebiotic-related modulation of microbial function and resultant increases in faecal SCFAs were not sufficient to prevent CIH-induced apnoea and hypertension in our model. Our results do not exclude the potential for microbiota-gut-brain axis involvement in OSA-related cardiorespiratory morbidity, but they demonstrate that in a relatively mild model of CIH, sufficient to evoke classic cardiorespiratory dysfunction, such changes are not obligatory for the development of morbidity, but may become relevant in the elaboration and maintenance of cardiorespiratory morbidity with progressive disease.
Funding
Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland. APC Microbiome Ireland is funded by Science Foundation Ireland, through the Government's National Development Plan
Strain differences in behaviour and immunity in aged mice: Relevance to autism.
The BTBR mouse model has been shown to be associated with deficits social interaction and a pronounced engagement in repetitive behaviours. Autism spectrum disorder (ASD) is the most prevalent neurodevelopmental condition globally. Despite its ubiquity, most research into the disorder remains focused on childhood, with studies in adulthood and old age relatively rare. To this end, we explored the differences in behaviour and immune function in an aged BTBR T + Itpr3tf/J mouse model of the disease compared to a similarly aged C57bl/6 control. We show that while many of the alterations in behaviour that are observed in young animals are maintained (repetitive behaviours, antidepressant-sensitive behaviours, social deficits & cognition) there are more nuanced effects in terms of anxiety in older animals of the BTBR strain compared to C57bl/6 controls. Furthermore, BTBR animals also exhibit an activated T-cell system. As such, these results represent confirmation that ASD-associated behavioural deficits are maintained in ageing, and that that there may be need for differential interventional approaches to counter these impairments, potentially through targeting the immune system
Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation
Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe₃C) and ferrimagnetic [(Fe,Mn)₃O₄ and Fe₂CrO4] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance
- …