393 research outputs found

    Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics

    Get PDF
    Swimming movements in boxfishes were much more complex and varied than classical descriptions indicated. At low to moderate rectilinear swimming speeds (<5 TL s^(-1), where TL is total body length), they were entirely median- and paired-fin swimmers, apparently using their caudal fins for steering. The pectoral and median paired fins generate both the thrust needed for forward motion and the continuously varied, interacting forces required for the maintenance of rectilinearity. It was only at higher swimming speeds (above 5 TL s^(-1)), when burst-and-coast swimming was used, that they became primarily body and caudal-fin swimmers. Despite their unwieldy appearance and often asynchronous fin beats, boxfish swam in a stable manner. Swimming boxfish used three gaits. Fin-beat asymmetry and a relatively nonlinear swimming trajectory characterized the first gait (0–1 TL s^(-1)). The beginning of the second gait (1–3 TL s^(-1)) was characterized by varying fin-beat frequencies and amplitudes as well as synchrony in pectoral fin motions. The remainder of the second gait (3–5 TL s^(-1)) was characterized by constant fin-beat amplitudes, varying finbeat frequencies and increasing pectoral fin-beat asynchrony. The third gait (>5 TL s^(-1)) was characterized by the use of a caudal burst-and-coast variant. Adduction was always faster than abduction in the pectoral fins. There were no measurable refractory periods between successive phases of the fin movement cycles. Dorsal and anal fin movements were synchronized at speeds greater than 2.5 TL s^(-1), but were often out of phase with pectoral fin movements

    Body-size and aerial basking dynamics of the Spiny Softshell (Apalone spinifera) in a human-modified landscape in Tennessee, USA

    Get PDF
    Spiny Softshells (Apalone spinifera) are found in aquatic environments throughout much of the central-eastern USA. Although this species is widespread throughout much of Tennessee, little is known about Spiny Softshells in the state’s northeastern counties. Further, little work has investigated the role of Spiny Softshell body size on resource use, and the morphometrics of the species in a human-modified ecosystem. Here we present results of a four-month capture and basking observation study conducted in 2004. We investigated whether larger body size was positively associated with presence at limited aerial basking resources that are potentially important for thermoregulation. We found that hoop trap captures positioned next to basking sites, a proxy for aerial basking resource use, were not associated with sex or body size measurements. Opportunistic basking observations revealed most individuals basked in the afternoon. Our study, while short in duration and of low sample size, builds understanding on the body size and intraspecific effects of resource use by Spiny Softshells in a human-modified ecosystem

    Rifts in Spreading Wax Layers

    Full text link
    We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.Comment: 4 pages, Postscript fil

    Conservation implications and opportunities of mining activities for terrestrial mammal habitat

    Get PDF
    Mining companies increasingly commit to a net positive impact on biodiversity. However, assessing the industry's progress toward achieving this goal is limited by knowledge of current mining threats to biodiversity and the relevant opportunities available for them to improve conservation outcomes. Here, we investigate the global exposure of terrestrial mammal habitat to mining activities, revealing the 136 species with &gt; 30% of their habitat within 10 km of a mining property or exploration site. One third (n = 42) of these species are already threatened with extinction according to the International Union for Conservation of Nature (IUCN), suggesting projected increased demand for minerals may push some species beyond critical thresholds. Moreover, 28% (n = 33) of species are Data Deficient, illustrating tangible ways for industry to fill current knowledge gaps. However, large discrepancies between our results and the species currently listed as threatened by mining in the IUCN Red List, suggest other species may be at risk and that conservation tools and analyses based on these data may underestimate the benefits of averting such threats. We recommend ways to better capture mining threats to species within IUCN Red List assessments and discuss how these changes could improve conservation outcomes in mineral-rich areas

    Consensus of travel direction is achieved by simple copying, not voting, in free-ranging goats

    Get PDF
    For group-living animals to remain cohesive they must agree on where to travel. Theoretical models predict shared group decisions should be favoured, and a number of empirical examples support this. However, the behavioural mechanisms that underpin shared decision-making are not fully understood. Groups may achieve consensus of direction by active communication of individual preferences (i.e. voting), or by responding to each other's orientation and movement (i.e. copying). For example, African buffalo (Syncerus caffer) are reported to use body orientation to vote and indicate their preferred direction to achieve a consensus on travel direction, while golden shiners (Notemigonus crysoleucas) achieve consensus of direction by responding to the movement cues of their neighbours. Here, we present a conceptual model (supported by agent-based simulations) that allows us to distinguish patterns of motion that represent voting or copying. We test our model predictions using high-resolution GPS and magnetometer data collected from a herd of free-ranging goats (Capra aegagrus hircus) in the Namib Desert, Namibia. We find that decisions concerning travel direction were more consistent with individuals copying one another's motion and find no evidence to support the use of voting with body orientation. Our findings highlight the role of simple behavioural rules for collective decision-making by animal groups

    New Young Star Candidates in BRC 27 and BRC 34

    Get PDF
    We used archival Spitzer Space Telescope mid-infrared data to search for young stellar objects (YSOs) in the immediate vicinity of two bright-rimmed clouds, BRC 27 (part of CMa R1) and BRC 34 (part of the IC 1396 complex). These regions both appear to be actively forming young stars, perhaps triggered by the proximate OB stars. In BRC 27, we find clear infrared excesses around 22 of the 26 YSOs or YSO candidates identified in the literature, and identify 16 new YSO candidates that appear to have IR excesses. In BRC 34, the one literature-identified YSO has an IR excess, and we suggest 13 new YSO candidates in this region, including a new Class I object. Considering the entire ensemble, both BRCs are likely of comparable ages, within the uncertainties of small number statistics and without spectroscopy to confirm or refute the YSO candidates. Similarly, no clear conclusions can yet be drawn about any possible age gradients that may be present across the BRCs.Comment: 54 pages, 19 figures, accepted by A
    corecore