13,123 research outputs found
Using Swift observations of prompt and afterglow emission to classify GRBs
We present an analysis of early BAT and XRT data for 107 gamma--ray bursts
(GRBs) observed by the Swift satellite. We use these data to examine the
behaviour of the X-ray light curve and propose a classification scheme for GRBs
based on this behaviour. As found for previous smaller samples, the earliest
X-ray light curve can be well described by an exponential which relaxes into a
power law, often with flares superimposed. The later emission is well fit using
a similar functional form and we find that these two functions provide a good
description of the entire X-ray light curve. For the prompt emission, the
transition time between the exponential and the power law gives a well-defined
timescale, T_p, for the burst duration. We use T_p, the spectral index of the
prompt emission, beta_p, and the prompt power law decay index, alpha_p to
define four classes of burst: short, slow, fast and soft. Bursts with slowly
declining emission have spectral and temporal properties similar to the short
bursts despite having longer durations. Some of these GRBs may therefore arise
from similar progenitors including several types of binary system. Short bursts
tend to decline more gradually than longer duration bursts and hence emit a
significant fraction of their total energy at times greater than T_p. This may
be due to differences in the environment or the progenitor for long, fast
bursts.Comment: 10 pages. 8 figures. Proceedings of the Royal Society Discussion
meeting on Gamma-ray Bursts, September 18-20, 2006. To appear in Phil. Trans.
Roy. Soc.
Majorana-based fermionic quantum computation
Because Majorana zero modes store quantum information non-locally, they are
protected from noise, and have been proposed as a building block for a quantum
computer. We show how to use the same protection from noise to implement
universal fermionic quantum computation. Our architecture requires only two
Majoranas to encode a fermionic quantum degree of freedom, compared to
alternative implementations which require a minimum of four Majoranas for a
spin quantum degree of freedom. The fermionic degrees of freedom support both
unitary coupled cluster variational quantum eigensolver and quantum phase
estimation algorithms, proposed for quantum chemistry simulations. Because we
avoid the Jordan-Wigner transformation, our scheme has a lower overhead for
implementing both of these algorithms, and the simulation of Trotterized
Hubbard Hamiltonian in time per unitary step. We finally
demonstrate magic state distillation in our fermionic architecture, giving a
universal set of topologically protected fermionic quantum gates.Comment: 4 pages + 4 page appendix, 4 figures, 2 table
Low-cost error mitigation by symmetry verification
We investigate the performance of error mitigation via measurement of
conserved symmetries on near-term devices. We present two protocols to measure
conserved symmetries during the bulk of an experiment, and develop a zero-cost
post-processing protocol which is equivalent to a variant of the quantum
subspace expansion. We develop methods for inserting global and local symetries
into quantum algorithms, and for adjusting natural symmetries of the problem to
boost their mitigation against different error channels. We demonstrate these
techniques on two- and four-qubit simulations of the hydrogen molecule (using a
classical density-matrix simulator), finding up to an order of magnitude
reduction of the error in obtaining the ground state dissociation curve.Comment: Published versio
Spectral evolution and the onset of the X-ray GRB afterglow
Based on light curves from the Swift Burst Analyser, we investigate whether a
`dip' feature commonly seen in the early-time hardness ratios of Swift-XRT data
could arise from the juxtaposition of the decaying prompt emission and rising
afterglow. We are able to model the dip as such a feature, assuming the
afterglow rises as predicted by Sari & Piran (1999). Using this model we
measure the initial bulk Lorentz factor of the fireball. For a sample of 23
GRBs we find a median value of Gamma_0=225, assuming a constant-density
circumburst medium; or Gamma_0=93 if we assume a wind-like medium.Comment: 4 pages, 3 figures. To appear in the proceedings of GRB 2010,
Annapolis November 2010. (AIP Conference proceedings
Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines
The similarity of quasar line spectra has been taken as an indication that
the emission line clouds have preferred parameters, suggesting that the
environment is subject to a fine tuning process. We show here that the observed
spectrum is a natural consequence of powerful selection effects. We computed a
large grid of photoionization models covering the widest possible range of
cloud gas density and distance from the central continuum source. For each line
only a narrow range of density and distance from the continuum source results
in maximum reprocessing efficiency, corresponding to ``locally
optimally-emitting clouds'' (LOC). These parameters depend on the ionization
and excitation potentials of the line, and its thermalization density. The mean
QSO line spectrum can be reproduced by simply adding together the full family
of clouds, with an appropriate covering fraction distribution. The observed
quasar spectrum is a natural consequence of the ability of various clouds to
reprocess the underlying continuum, and can arise in a chaotic environment with
no preferred pressure, gas density, or ionization parameter.Comment: 9 pages including 1 ps figure. LaTeX format using aaspp4.st
Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops.
The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory. IRPD spectra of M(H2O) n where M = La3+, Ca2+, Na+, Li+, I-, SO42- and supporting molecular dynamics simulations indicate that strong interactions between multiply charged ions and water molecules can disrupt optimal hydrogen bonding (H-bonding) at the nanodrop surface. The IRPD spectra also reveal that "free" OH stretching frequencies of surface-bound water molecules are highly sensitive to the ion's identity and the OH bond's local H-bond environment. The measured frequency shifts are qualitatively reproduced by a computationally inexpensive point-charge model that shows the frequency shifts are consistent with a Stark shift from the ion's electric field. For multiply charged cations, pronounced Stark shifting is observed for clusters containing ∼100 or fewer water molecules. This is attributed to ion-induced solvent patterning that extends to the nanodrop surface, and serves as a spectroscopic signature for a cation's ability to influence the H-bond network of water located remotely from the ion. The Stark shifts measured for the larger nanodrops are extrapolated to infinite dilution to obtain the free OH stretching frequency of a surface-bound water molecule at the bulk air-water interface (3696.5-3701.0 cm-1), well within the relatively wide range of values obtained from SFG measurements. These cluster measurements also indicate that surface curvature effects can influence the free OH stretching frequency, and that even nanodrops without an ion have a surface potential that depends on cluster size
Gamma-Ray Bursts observed by XMM-Newton
Analysis of observations with XMM-Newton have made a significant contribution
to the study of Gamma-ray Burst (GRB) X-ray afterglows. The effective area,
bandpass and resolution of the EPIC instrument permit the study of a wide
variety of spectral features. In particular, strong, time-dependent, soft X-ray
emission lines have been discovered in some bursts. The emission mechanism and
energy source for these lines pose major problems for the current generation of
GRB models. Other GRBs have intrinsic absorption, possibly related to the
environment around the progenitor, or possible iron emission lines similar to
those seen in GRBs observed with BeppoSAX. Further XMM-Newton observations of
GRBs discovered by the Swift satellite should help unlock the origin of the GRB
phenomenon over the next few years.Comment: To appear in proceedings of the "XMM-Newton EPIC Consortium meeting,
Palermo, 2003 October 14-16", published in Memorie della Societa Astronomica
Italian
Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: II. 1D hydrodynamical models of wind driven shocks
Following the early Swift X-ray observations of the latest outburst of the
recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D
hydrodynamical models of the system which take into account all three phases of
the remnant evolution. The models suggest a novel way of modelling the system
by treating the outburst as a sudden increase then decrease in wind mass-loss
rate and velocity. The differences between this wind model and previous
Primakoff-type simulations are described. A more complex structure, even in 1D,
is revealed through the presence of both forward and reverse shocks, with a
separating contact discontinuity. The effects of radiative cooling are
investigated and key outburst parameters such as mass-loss rate, ejecta
velocity and mass are varied. The shock velocities as a function of time are
compared to the ones derived in Paper I. We show how the manner in which the
matter is ejected controls the evolution of the shock and that for a
well-cooled remnant, the shock deceleration rate depends on the amount of
energy that is radiated away.Comment: 9 pages, 5 figure
- …