8,624 research outputs found

    Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015--16

    Full text link
    One of the most exciting near-term prospects in physics is the potential discovery of gravitational waves by the advanced LIGO and Virgo detectors. To maximise both the confidence of the detection and the science return, it is essential to identify an electromagnetic counterpart. This is not trivial, as the events are expected to be poorly localised, particularly in the near-term, with error regions covering hundreds or even thousands of square degrees. In this paper we discuss the prospects for finding an X-ray counterpart to a gravitational wave trigger with the Swift X-ray Telescope, using the assumption that the trigger is caused by a binary neutron star merger which also produces a short gamma-ray burst. We show that it is beneficial to target galaxies within the GW error region, highlighting the need for substantially complete galaxy catalogues out to distances of 300 Mpc. We also show that nearby, on-axis short GRBs are either extremely rare, or are systematically less luminous than those detected to date. We consider the prospects for detecting afterglow emission from an an off-axis GRB which triggered the GW facilities, finding that the detectability, and the best time to look, are strongly dependent on the characteristics of the burst such as circumburst density and our viewing angle.Comment: 17 pages, 14 figures. Accepted for publication in MNRA

    The optical variability of the narrow line Seyfert 1 galaxy IRAS 13224-3809

    Get PDF
    We report on a short optical monitoring programme of the narrow-line Seyfert 1 Galaxy IRAS 13224-3809. Previous X-ray observations of this object have shown persistent giant variability. The degree of variability at other wavelengths may then be used to constrain the conditions and emission processes within the nucleus. Optical variability is expected if the electron population responsible for the soft X-ray emission is changing rapidly and Compton-upscattering infrared photons in the nucleus, or if the mechanism responsible for X-ray emission causes all the emission processes to vary together. We find that there is no significant optical variability with a firm upper limit of 2 per cent and conclude that the primary soft X-ray emission region produces little of the observed optical emission. The X-ray and optical emission regions must be physically distinct and any reprocessing of X-rays into the optical waveband occurs some distance from the nucleus. The lack of optical variability indicates that the energy density of infrared radiation in the nucleus is at most equal to that of the ultraviolet radiation since little is upscattered into the optical waveband. The extremely large X-ray variability of IRAS 13224-3809 may be explained by relativistic boosting of more modest variations. Although such boosting enhances X-ray variability over optical variability, this only partially explains the lack of optical variability.Comment: 5 pages with 8 postscript figures. Accepted for publication in MNRA

    Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback

    Full text link
    A proposal for an all-optical memory based on a bistability of single-mode states in a dual-mode diode laser with time-delayed optical feedback is presented. The system is modeled using a multimode extension of the Lang-Kobayashi equations with injected optical pulses. We uncover the bifurcation structure by deriving analytical expressions for the boundaries of the bistable region and demonstrate how the delay time in the external cavity determines an optimal pulse duration for efficient switching of the memory element. We also show the relevant role played by gain saturation and by the dual-mode solutions of the Lang-Kobayashi equations for the existence of the bistable regions. Our results demonstrate that feedback induced bistability can lead to significant performance improvements when compared to memory elements based on the injection locking bistability in dual-mode devices

    Power-law carrier dynamics in semiconductor nanocrystals at nanosecond time scales

    Full text link
    We report the observation of power law dynamics on nanosecond to microsecond time scales in the fluorescence decay from semiconductor nanocrystals, and draw a comparison between this behavior and power-law fluorescence blinking from single nanocrystals. The link is supported by comparison of blinking and lifetime data measured simultaneously from the same nanocrystal. Our results reveal that the power law coefficient changes little over the nine decades in time from 10 ns to 10 s, in contrast with the predictions of some diffusion based models of power law behavior.Comment: 3 pages, 2 figures, compressed for submission to Applied Physics Letter

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α≈1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let

    The early and late-time spectral and temporal evolution of GRB 050716

    Get PDF
    We report on a comprehensive set of observations of Gamma Ray Burst 050716, detected by the Swift satellite and subsequently followed-up rapidly in X-ray, optical and near infra-red wavebands. The prompt emission is typical of long-duration bursts, with two peaks in a time interval of T90 = 68 seconds (15 - 350 keV). The prompt emission continues at lower flux levels in the X-ray band, where several smaller flares can be seen, on top of a decaying light curve that exhibits an apparent break around 220 seconds post trigger. This temporal break is roughly coincident with a spectral break. The latter can be related to the extrapolated evolution of the break energy in the prompt gamma-ray emission, and is possibly the manifestation of the peak flux break frequency of the internal shock passing through the observing band. A possible 3 sigma change in the X-ray absorption column is also seen during this time. The late-time afterglow behaviour is relatively standard, with an electron distribution power-law index of p = 2 there is no noticable temporal break out to at least 10 days. The broad-band optical/nIR to X-ray spectrum indicates a redshift of z ~> 2 for this burst, with a host-galaxy extinction value of E(B-V) ~ 0.7 that prefers an SMC-like extinction curve.Comment: Accepted to MNRAS. 8 pages, 5 figure

    Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data

    Get PDF
    Abstract We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer (MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons \u3e900 keV were observed with equatorial fluxes above background (i.e., \u3e0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes \u3c200 keV exceeded the AE9 model 50% fluxes and were lower than the higher-energy model fluxes. Phase space density radial profiles for 1.3 ≤ L* \u3c 2.5 had mostly positive gradients except near L*~2.1, where the profiles for μ = 20–30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do
    • …
    corecore