12,856 research outputs found

    Implementing a Business Process Management System Using ADEPT: A Real-World Case Study

    Get PDF
    This article describes how the agent-based design of ADEPT (advanced decision environment for processed tasks) and implementation philosophy was used to prototype a business process management system for a real-world application. The application illustrated is based on the British Telecom (BT) business process of providing a quote to a customer for installing a network to deliver a specified type of telecommunication service. Particular emphasis is placed upon the techniques developed for specifying services, allowing heterogeneous information models to interoperate, allowing rich and flexible interagent negotiation to occur, and on the issues related to interfacing agent-based systems and humans. This article builds upon the companion article (Applied Artificial Intelligence Vol.14, no 2, pgs. 145-189) that provides details of the rationale and design of the ADEPT technology deployed in this application

    An XMM-Newton observation of the Narrow Line Seyfert 1 Galaxy, Markarian 896

    Get PDF
    XMM-Newton observations of the NLS1 Markarian 896 are presented. Over the 2-10 keV band, an iron emission line, close to 6.4 keV, is seen. The line is just resolved and has an equivalent width of ~170 eV. The broad-band spectrum is well modelled by a power law slope of gamma ~ 2.03, together with two blackbody components to fit the soft X-ray excess. Using a more physical two-temperature Comptonisation model, a good fit is obtained for an input photon distribution of kT ~ 60eV and Comptonising electron temperatures of ~0.3 and 200 keV. The soft excess cannot be explained purely through the reprocessing of a hard X-ray continuum by an ionised disc reflector.Comment: 6 pages, 4 figures, accepted by MNRA

    Resolving the large scale spectral variability of the luminous Seyfert 1 galaxy 1H 0419-577: Evidence for a new emission component and absorption by cold dense matter

    Full text link
    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below ~1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was `X-ray bright' indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable `soft excess' then appears to be an artefact of absorption of the underlying continuum while the `core' soft emission can be attributed to recombination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.Comment: 34 pages, 15 figures, submitted to Ap

    A universal GRB photon energy-peak luminosity relation

    Full text link
    The energetics and emission mechanism of GRBs are not well understood. Here we demonstrate that the instantaneous peak flux or equivalent isotropic peak luminosity, L_iso ergs s^-1, rather than the integrated fluence or equivalent isotropic energy, E_iso ergs, underpins the known high-energy correlations. Using new spectral/temporal parameters calculated for 101 bursts with redshifts from BATSE, BeppoSAX, HETE-II and Swift we describe a parameter space which characterises the apparently diverse properties of the prompt emission. We show that a source frame characteristic-photon-energy/peak luminosity ratio, K_z, can be constructed which is constant within a factor of 2 for all bursts whatever their duration, spectrum, luminosity and the instrumentation used to detect them. The new parameterization embodies the Amati relation but indicates that some correlation between E_peak and E_iso follows as a direct mathematical inference from the Band function and that a simple transformation of E_iso to L_iso yields a universal high energy correlation for GRBs. The existence of K_z indicates that the mechanism responsible for the prompt emission from all GRBs is probably predominantly thermal.Comment: Submitted to Ap

    A-STAR: The All-Sky Transient Astrophysics Reporter

    Full text link
    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.Comment: Accepted for the European Astronomical Society Publications Series: Proceedings of the Fall 2012 Gamma-Ray Burst Symposium held in Marbella, Spain, 8-12 Oct 201

    Violation of the Leggett-Garg inequality with weak measurements of photons

    Full text link
    By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements, and the violation of realism and non-intrusiveness of measurements. A quantitative formulation of the latter concept is expressed in terms of a Leggett-Garg inequality for the outcomes of subsequent measurements of an individual quantum system. We experimentally violate the Leggett-Garg inequality for several measurement strengths. Furthermore, we experimentally demonstrate that there is a one-to-one correlation between achieving strange weak values and violating the Leggett-Garg inequality.Comment: 5 pages, 4 figure

    Fe K emission and absorption features in XMM-Newton spectra of Mkn 766 - evidence for reprocessing in flare ejecta

    Full text link
    We report on the analysis of a long XMM-Newton EPIC observation in 2001 May of the Narrow Line Seyfert 1 galaxy Mkn 766. The 3-11 keV spectrum exhibits a moderately steep power law continuum, with a broad emission line at ~6.7 keV, probably blended with a narrow line at ~6.4 keV, and a broad absorption trough above ~8.7 keV. We identify both broad spectral features with reprocessing in He-like Fe. An earlier XMM-Newton observation of Mkn 766 in 2000 May, when the source was a factor ~2 fainter, shows a similar broad emission line, but with a slightly flatter power law and absorption at a lower energy. In neither observation do we find a requirement for the previously reported broad 'red wing' to the line and hence of reflection from the innermost accretion disc. More detailed examination of the longer XMM-Newton observation reveals evidence for rapid spectral variability in the Fe K band, apparently linked with the occurrence of X-ray 'flares'. A reduction in the emission line strength and increased high energy absorption during the X-ray flaring suggests that these transient effects are due to highly ionised ejecta associated with the flares. Simple scaling from the flare avalanche model proposed for the luminous QSO PDS 456 (Reeves etal. 2002) confirms the feasibility of coherent flaring being the cause of the strong peaks seen in the X-ray light curve of \mkn.Comment: 9 pages, 11 figures, submitted to MNRA

    A Construction of Solutions to Reflection Equations for Interaction-Round-a-Face Models

    Get PDF
    We present a procedure in which known solutions to reflection equations for interaction-round-a-face lattice models are used to construct new solutions. The procedure is particularly well-suited to models which have a known fusion hierarchy and which are based on graphs containing a node of valency 11. Among such models are the Andrews-Baxter-Forrester models, for which we construct reflection equation solutions for fixed and free boundary conditions.Comment: 9 pages, LaTe

    Boson Sampling from Gaussian States

    Full text link
    We pose a generalized Boson Sampling problem. Strong evidence exists that such a problem becomes intractable on a classical computer as a function of the number of Bosons. We describe a quantum optical processor that can solve this problem efficiently based on Gaussian input states, a linear optical network and non-adaptive photon counting measurements. All the elements required to build such a processor currently exist. The demonstration of such a device would provide the first empirical evidence that quantum computers can indeed outperform classical computers and could lead to applications
    corecore