61 research outputs found
Lewis Phenotype in Women With Preterm Labor and Premature Rupture of the Membranes
Objective: The purpose of this study was to evaluate the possible association between Lewis phenotype status in pregnant women and preterm labor (PTL) or preterm rupture of the membranes (PROM)
Cognitive and Motor Decline in Dementia with Lewy Bodies and Parkinson's Disease Dementia
Funding Information: The University of Stavanger supported M.C.G. The CamPaIGN study has received funding from the Wellcome Trust, the Medical Research Council, the Patrick Berthoud Trust, and the NIHR Cambridge Biomedical Research Centre (BRCâ1215â20014). The ICICLEâPD study was funded by Parkinson's UK (Jâ0802, Gâ1301, Gâ1507) and supported by the Lockhart Parkinson's Disease Research Fund, National Institute for Health Research (NIHR) Newcastle Biomedical Research Unit and Centre based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. The PICNICS study was funded by the Cure Parkinson's Trust, the Van Geest Foundation, the Medical Research Council, Parkinson's UK, and the NIHR Cambridge Biomedical Research Centre (BRCâ1215â20014). The NYPUM study was supported by grants from the Swedish Medical Research Council, ErlingâPersson Foundation, the Swedish Brain Foundation (HjĂ€rnfonden), UmeĂ„ University, VĂ€sterbotten County Council, King Gustaf V and Queen Victoria Freemason Foundation, Swedish Parkinson Foundation, Swedish Parkinson Research Foundation, Kempe Foundation, Swedish PD Association, the European Research Council, and the Knut and Alice Wallenberg Foundation. The PINE study was funded by Parkinson's UK (grant numbers G0502, G0914, and G1302), the Scottish Chief Scientist Office (CAF/12/05, PCL/17/10), Academy of Medical Sciences, NHS Grampian endowments, the BMA Doris Hillier award, RS Macdonald Trust, the BUPA Foundation, and SPRING. The PARKWEST study was supported by the Research Council of Norway (grant# 177966), the Western Norway Regional Health Authority (grant# 911218 and # 911949), Reberg legacy and the Norwegian Parkinson's Research Foundation. The PICC collaboration has been supported by The Chief Scientist Office of the Scottish Government (PCL/17/10), the Academy of Medical Sciences, Parkinson's UK (initial collaborator meeting) and the Norwegian Association for Public Health. The DEMVEST Study was supported by the regional health authorities of Western Norway, HelseâVest (grant# 911973). Motol University Hospital's Czech Brain Aging Study was supported by the National Institute for Neurological Research (Programme EXCELES, ID Project No. LX22NPO5107)âFunded by the European UnionâNext Generation EU and by Charles University grant PRIMUS 22/MED/011. The Sant Pau Initiative on Neurodegeration (SPIN) cohort was supported by the Fondo de Investigaciones Sanitario (FIS), Instituto de Salud Carlos III (PI14/01126, PI17/01019 and PI20/01473 to JF, PI13/01532 and PI16/01825 to RB, PI18/00335 to MCI, PI18/00435 and INT19/00016 to DA, PI17/01896 and AC19/00103to AL) and the CIBERNED program (Program 1, Alzheimer Disease to AL), jointly funded by Fondo Europeo de Desarrollo Regional, UniĂłn Europea, âUna manera de hacer Europaâ. It was also supported by the National Institutes of Health (NIA grants 1R01AG056850â01A1; R21AG056974; and R01AG061566), by Generalitat de Catalunya (2017âSGRâ547, SLT006/17/125, SLT006/17/119, SLT002/16/408) and âMaratĂł TV3â foundation grants 20141210, 044412 and 20142610. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The sponsors were not involved in the study design, in the collection, analysis, and interpretation of data, in the writing of the report, or in the decision to submit the article for publication. The authors declare that there are no conflicts of interest relevant to this work. Funding Sources and Conflicts of Interest:Peer reviewedPublisher PD
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
The Role of Health Systems Factors in Facilitating Access to Psychotropic Medicines: A Cross-Sectional Analysis of the WHO-AIMS in 63 Low- and Middle-Income Countries
In a cross-sectional analysis of WHO-AIMS data, Ryan McBain and colleagues investigate the associations between health system components and access to psychotropic drugs in 63 low and middle income countries
Mutant profilin1 transgenic mice recapitulate cardinal features of motor neuron disease
The recent identiïŹcation of proïŹlin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeletonregulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant proïŹlin1 in motor neuron disease, we generated transgenic lines of mice expressing human proïŹlin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant proïŹlin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low ïŹlamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel proïŹlin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis
VERITAS discovery of very high energy gamma-ray emission from S3 1227+25 and multiwavelength observations
We report the detection of very high energy gamma-ray emission from the
blazar S3 1227+25 (VER J1230+253) with the Very Energetic Radiation Imaging
Telescope Array System (VERITAS). VERITAS observations of the source were
triggered by the detection of a hard-spectrum GeV flare on May 15, 2015 with
the Fermi-Large Area Telescope (LAT). A combined five-hour VERITAS exposure on
May 16th and May 18th resulted in a strong 13 detection with a
differential photon spectral index, = 3.8 0.4, and a flux level
at 9% of the Crab Nebula above 120 GeV. This also triggered target of
opportunity observations with Swift, optical photometry, polarimetry and radio
measurements, also presented in this work, in addition to the VERITAS and
Fermi-LAT data. A temporal analysis of the gamma-ray flux during this period
finds evidence of a shortest variability timescale of = 6.2
0.9 hours, indicating emission from compact regions within the jet, and the
combined gamma-ray spectrum shows no strong evidence of a spectral cut-off. An
investigation into correlations between the multiwavelength observations found
evidence of optical and gamma-ray correlations, suggesting a single-zone model
of emission. Finally, the multiwavelength spectral energy distribution is well
described by a simple one-zone leptonic synchrotron self-Compton radiation
model.Comment: 18 pages, 6 figures. Accepted for publication in the Astrophysical
Journal (ApJ
Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types
Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies
- âŠ