12,044 research outputs found

    Lithospheric failure on Venus

    Get PDF
    We develop a predictive model which has the ability to explain a postulated style of episodic plate tectonics on Venus, through the periodic occurrence of lithospheric subduction events. Present-day incipient subduction zones are associated with the existence of arcuate trenches on the Venusian lithosphere. These trenches resemble terrestrial subduction zones, and occur at the rim of coronae, uplift features thought to be due to deep-mantle convective plumes. The model we adopt represents the lithosphere as the thermal boundary layer which lies above a convective plume. We assume a temperature-dependent nonlinear viscoelastic rheology, and we assume a stress-based criterion for plastic yield. In developing this latter criterion, we are led to a re-interpretation of the strength envelope which is commonly used in analysing lithospheric stress, and we propose that the plastic yield strength has meaning (and is finite) below the lithosphere, using behaviour in the Earth as our 'laboratory' justification for this view. An inferred yield stress on the Earth is ca. 300 bar (30 MPa). Our model then shows that a thickening lithosphere becomes progressively more fluid as the stresses induced by the buoyant convective plume become large. Failure occurs when the effective lithosphere viscosity becomes equal to that of the underlying mantle. We show that reasonable expected values of yield stress in the range 100-200 bar (10-20 MPa) for Venusian mantle rocks are consistent within the framework of the model with radii of coronal trenches in the range 100-1200 km, and with the approximate time (200-800 Myr) which they may take to develop

    Spatial clusters of gonorrhoea in England with particular reference to the outcome of partner notification: 2012 and 2013

    Get PDF
    Background: This study explored spatial-temporal variation in diagnoses of gonorrhoea to identify and quantify endemic areas and clusters in relation to patient characteristics and outcomes of partner notification (PN) across England, UK. Methods: Endemic areas and clusters were identified using a two-stage analysis with Kulldorff’s scan statistics (SaTScan). Results Of 2,571,838 tests, 53,547 diagnoses were gonorrhoea positive (positivity = 2.08%). The proportion of diagnoses in heterosexual males was 1.5 times that in heterosexual females. Among index cases, men who have sex with men (MSM) were 8 times more likely to be diagnosed with gonorrhoea than heterosexual males (p<0.0001). After controlling for age, gender, ethnicity and deprivation rank, 4 endemic areas were identified including 11,047 diagnoses, 86% of which occurred in London. 33 clusters included 17,629 diagnoses (34% of total diagnoses in 2012 and 2013) and spanned 21 locations, some of which were dominated by heterosexually acquired infection, whilst others were MSM focused. Of the 53,547 diagnoses, 14.5% (7,775) were the result of PN. The proportion of patients who attended services as a result of PN varied from 0% to 61% within different age, gender and sexual orientation cohorts. A third of tests resulting from PN were positive for gonorrhoea. 25% of Local Authorities (n = 81, 95% CI: 20.2, 29.5) had a higher than expected proportion for female PN diagnoses as compared to 16% for males (n = 52, 95% CI: 12.0, 19.9). Conclusions: The English gonorrhoea epidemic is characterised by spatial-temporal variation. PN success varied between endemic areas and clusters. Greater emphasis should be placed on the role of PN in the control of gonorrhoea to reduce the risk of onward transmission, re-infection, and complications of infection

    Adaptive weight estimator for quantum error correction

    Get PDF
    Quantum error correction of a surface code or repetition code requires the pairwise matching of error events in a space-time graph of qubit measurements, such that the total weight of the matching is minimized. The input weights follow from a physical model of the error processes that affect the qubits. This approach becomes problematic if the system has sources of error that change over time. Here we show how the weights can be determined from the measured data in the absence of an error model. The resulting adaptive decoder performs well in a time-dependent environment, provided that the characteristic time scale τenv\tau_{\mathrm{env}} of the variations is greater than δt/pˉ\delta t/\bar{p}, with δt\delta t the duration of one error-correction cycle and pˉ\bar{p} the typical error probability per qubit in one cycle.Comment: 5 pages, 4 figure

    An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    Get PDF
    We present graphically the results of several thousand photoionization calculations of broad emission line clouds in quasars, spanning seven orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density - ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H)=1023cm2N(H) = 10^{23} cm^{-2}. Results are similarly given for a small subset of emission lines for two other column densities (1022cm210^{22} cm^{-2} and 1024cm210^{24} cm^{-2}), five other incident continuum shapes, and a gas metallicity of 5 \Zsun. These graphs should prove useful in the analysis of quasar emission line data and in the detailed modeling of quasar broad emission line regions. The digital results of these emission line grids and many more are available over the Internet.Comment: 16 pages, LaTeX (AASTeX aaspp4.sty); to appear in the 1997 ApJS: full contents of the 9 photoionization grids presented in this paper may be found at http://www.pa.uky.edu/~korista/grids/grids.htm

    Complete Characterization of Quantum-Optical Processes

    Full text link
    The technologies of quantum information and quantum control are rapidly improving, but full exploitation of their capabilities requires complete characterization and assessment of processes that occur within quantum devices. We present a method for characterizing, with arbitrarily high accuracy, any quantum optical process. Our protocol recovers complete knowledge of the process by studying, via homodyne tomography, its effect on a set of coherent states, i.e. classical fields produced by common laser sources. We demonstrate the capability of our protocol by evaluating and experimentally verifying the effect of a test process on squeezed vacuum.Comment: 5 pages, 4 figure

    Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements

    Full text link
    Protecting quantum information from errors is essential for large-scale quantum computation. Quantum error correction (QEC) encodes information in entangled states of many qubits, and performs parity measurements to identify errors without destroying the encoded information. However, traditional QEC cannot handle leakage from the qubit computational space. Leakage affects leading experimental platforms, based on trapped ions and superconducting circuits, which use effective qubits within many-level physical systems. We investigate how two-transmon entangled states evolve under repeated parity measurements, and demonstrate the use of hidden Markov models to detect leakage using only the record of parity measurement outcomes required for QEC. We show the stabilization of Bell states over up to 26 parity measurements by mitigating leakage using postselection, and correcting qubit errors using Pauli-frame transformations. Our leakage identification method is computationally efficient and thus compatible with real-time leakage tracking and correction in larger quantum processors.Comment: 22 pages, 15 figure

    Respiratory Motion Guided Four Dimensional Cone Beam Computed Tomography: Encompassing Irregular Breathing

    Get PDF
    Four dimensional cone beam computed tomography (4DCBCT) images su er from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, Respiratory Motion Guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient's respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG- 4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient's respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 minute acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quanti ed streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-o image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C- arm CBCT systems, with an acceleration up to 200 degrees=s2, a velocity up to 100 degrees=s and the acquisition of 80 projections per second, allow the image acquisition time to be reduced to below 60 seconds. We have made considerable progress towards realising a system to reduce projection clustering in conventional 4DCBCT imaging and hence reduce the imaging dose to the patient

    It's a wonderful tail: the mass loss history of Mira

    Full text link
    Recent observations of the Mira AB binary system have revealed a surrounding arc-like structure and a stream of material stretching 2 degrees away in opposition to the arc. The alignment of the proper motion vector and the arc-like structure shows the structures to be a bow shock and accompanying tail. We have successfully hydrodynamically modelled the bow shock and tail as the interaction between the asymptotic giant branch (AGB) wind launched from Mira A and the surrounding interstellar medium. Our simulations show that the wake behind the bow shock is turbulent: this forms periodic density variations in the tail similar to those observed. We investigate the possiblity of mass-loss variations, but find that these have limited effect on the tail structure. The tail is estimated to be approximately 450,000 years old, and is moving with a velocity close to that of Mira itself. We suggest that the duration of the high mass-loss phase on the AGB may have been underestimated. Finally, both the tail curvature and the rebrightening at large distance can be qualitatively understood if Mira recently entered the Local Bubble. This is estimated to have occured 17 pc downstream from its current location.Comment: 12 pages, 3 colour figures, accepted by ApJ Part II (Letters

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: II. 1D hydrodynamical models of wind driven shocks

    Full text link
    Following the early Swift X-ray observations of the latest outburst of the recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D hydrodynamical models of the system which take into account all three phases of the remnant evolution. The models suggest a novel way of modelling the system by treating the outburst as a sudden increase then decrease in wind mass-loss rate and velocity. The differences between this wind model and previous Primakoff-type simulations are described. A more complex structure, even in 1D, is revealed through the presence of both forward and reverse shocks, with a separating contact discontinuity. The effects of radiative cooling are investigated and key outburst parameters such as mass-loss rate, ejecta velocity and mass are varied. The shock velocities as a function of time are compared to the ones derived in Paper I. We show how the manner in which the matter is ejected controls the evolution of the shock and that for a well-cooled remnant, the shock deceleration rate depends on the amount of energy that is radiated away.Comment: 9 pages, 5 figure
    corecore