40 research outputs found

    Holographic Flavor Transport in Arbitrary Constant Background Fields

    Full text link
    We use gauge-gravity duality to compute a new transport coefficient associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon number density as well as arbitrary constant electric and magnetic fields, generalizing previous calculations by including a magnetic field with a component parallel to the electric field. We can thus compute all components of the conductivity tensor associated with transport of baryon number charge, including a component never before calculated in gauge-gravity duality. We also compute the contribution that the flavor degrees of freedom make to the stress-energy tensor, which exhibits divergences associated with the rates of energy and momentum loss of the flavor degrees of freedom. We discuss two currents that are free from these divergences, one of which becomes anomalous when the magnetic field has a component parallel to the electric field and hence may be related to recent study of charge transport in the presence of anomalies.Comment: 27 page

    Spinning Dragging Strings

    Full text link
    We use the AdS/CFT correspondence to compute the drag force experienced by a heavy quark moving through a maximally supersymmetric SU(N) super Yang-Mills plasma at nonzero temperature and R-charge chemical potential and at large 't Hooft coupling. We resolve a discrepancy in the literature between two earlier studies of such quarks. In addition, we consider small fluctuations of the spinning strings dual to these probe quarks and find no evidence of instabilities. We make some comments about suitable D7-brane boundary conditions for the dual strings.Comment: 25 pages, 4 figures; v2 refs added; v3 to appear in JHEP, clarifying comment

    Critical Exponents from AdS/CFT with Flavor

    Full text link
    We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplet flavor fields coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of large Nc and large 't Hooft coupling. The gravitational duals are probe D-branes in global thermal AdS. These D-branes may undergo a topology-changing transition in the bulk. The D-brane embeddings near the point of the topology change exhibit a scaling symmetry. The associated scaling exponents can be either real- or complex-valued. Which regime applies depends on the dimensionality of a collapsing submanifold in the critical embedding. When the scaling exponents are complex-valued, a first-order transition associated with the flavor fields appears in the dual field theory. Real scaling exponents are expected to be associated with a continuous transition in the dual field theory. For one example with real exponents, the D7-brane, we study the transition in detail. We find two field theory observables that diverge at the critical point, and we compute the associated critical exponents. We also present analytic and numerical evidence that the transition expresses itself in the meson spectrum as a non-analyticity at the critical point. We argue that the transition we study is a true phase transition only when the 't Hooft coupling is strictly infinite.Comment: 31 pages, 21 eps files in 12 figures; v2 added one reference and one footnote, version published in JHE

    Universal Holographic Chiral Dynamics in an External Magnetic Field

    Get PDF
    In this work we further extend the investigation of holographic gauge theories in external magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions, using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy effective actions of the corresponding pseudo Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the usual Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion relation, while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a modified linear GMOR relation. The low energy effective action of the D3/D5 system is related to that describing magnon excitations in a ferromagnet. We also study properties of general Dp/Dq systems in an external magnetic field and verify the universality of the magnetic catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde

    Toward a Holographic Model of Superconducting Fermions

    Full text link
    We use the AdS/CFT correspondence to study N=4 supersymmetric SU(Nc) Yang-Mills theory, in the limits of large Nc and large 't Hooft coupling, coupled to a number Nf of massless hypermultiplet fields in the fundamental representation of the gauge group. We identify a U(1) subgroup of the R-symmetry under which the fermions in the hypermultiplet are charged but the scalars are not. All the hypermultiplet fields are also charged under a U(1) baryon number symmetry. We introduce an external magnetic field for the baryon number U(1), which triggers the spontaneous breaking of the U(1) R-symmetry, and we then introduce a chemical potential for the U(1) R-charge, producing a state with a nonzero density of the U(1) R-charge. The system should then exhibit superconductivity of the U(1) R-charge. The dual supergravity description is a number Nf of D7-branes in AdS5 x S5 with angular momentum on the S5 and a worldvolume magnetic field. We study the zero-temperature thermodynamics of the system, and find that for sufficiently large magnetic field the system prefers to be in the symmetry-broken phase. For smaller magnetic fields we find a discontinuous free energy, indicating that our gravitational setup does not capture all equilibrium states of the field theory.Comment: 32 pages, 22 eps files in 9 figure

    Adding Flavor to AdS4/CFT3

    Full text link
    Aharony, Bergman, Jafferis, and Maldacena have proposed that the low-energy description of multiple M2-branes at a C4/Zk singularity is a (2+1)-dimensional N=6 supersymmetric U(Nc) x U(Nc) Chern-Simons matter theory, the ABJM theory. In the large-Nc limit, its holographic dual is supergravity in AdS4 x S7/Zk. We study various ways to add fields that transform in the fundamental representation of the gauge groups, i.e. flavor fields, to the ABJM theory. We work in a probe limit and perform analyses in both the supergravity and field theory descriptions. In the supergravity description we find a large class of supersymmetric embeddings of probe flavor branes. In the field theory description, we present a general method to determine the couplings of the flavor fields to the fields of the ABJM theory. We then study four examples in detail: codimension-zero N=3 supersymmetric flavor, described in supergravity by Kaluza-Klein monopoles or D6-branes; codimension-one N=(0,6) supersymmetric chiral flavor, described by D8-branes; codimension-one N=(3,3) supersymmetric non-chiral flavor, described by M5/D4-branes; codimension-two N=4 supersymmetric flavor, described by M2/D2-branes. Finally we discuss special physical equivalences between brane embeddings in M-theory, and their interpretation in the field theory description.Comment: 60 pages, 1 figure; v2: minor corrections, added two references, version published in JHE

    Transport Properties of Holographic Defects

    Full text link
    We study the charge transport properties of fields confined to a (2+1)-dimensional defect coupled to (3+1)-dimensional super-Yang-Mills at large-\nc and strong coupling, using AdS/CFT techniques applied to linear response theory. The dual system is described by \nf probe D5- or D7-branes in the gravitational background of \nc black D3-branes. Surprisingly, the transport properties of both defect CFT's are essentially identical -- even though the D7-brane construction breaks all supersymmetries. We find that the system possesses a conduction threshold given by the wave-number of the perturbation and that the charge transport arises from a quasiparticle spectrum which is consistent with an intuitive picture where the defect acquires a finite width. We also examine finite-λ\lambda modifications arising from higher derivative interactions in the probe brane action.Comment: 54 pages, 22 figures, references added, minor changes to figures and comments, final version published in JHE

    Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL)

    Get PDF
    The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software
    corecore