43 research outputs found

    Dissemination of Clonal Groups of Brachyspira hyodysenteriae amongst Pig Farms in Spain, and Their Relationships to Isolates from Other Countries

    Get PDF
    Background: Swine dysentery (SD) is a widespread diarrhoeal disease of pigs caused by infection of the large intestine with the anaerobic intestinal spirochaete Brachyspira hyodysenteriae. Understanding the dynamics of SD, and hence being able to develop more effective measures to counter its spread, depends on the ability to characterise B. hyodysenteriae variants and trace relationships of epidemic strains. Methodology/Principal Findings: A collection of 51 Spanish and 1 Portuguese B. hyodysenteriae isolates was examined using a multilocus sequence typing (MLST) scheme based on the sequences of seven conserved genomic loci. The isolates were allocated to 10 sequence types (STs) in three major groups of descent. Isolates in four of the STs were widely distributed in farms around Spain. One farm was infected with isolates from more than one ST. Sequence data obtained from PubMLST for 111 other B. hyodysenteriae strains from other countries then were included in the analysis. Two of the predominant STs that were found in Spain also were present in other European countries. The 73 STs were arranged in eleven clonal complexes (Cc) containing between 2 and 26 isolates. A population snapshot based on amino acid types (AATs) placed 75% of the isolates from 32 of the 48 AATs into one major cluster. The founder type AAT9 included 22 isolates from 10 STs that were recovered in Spain, Australia, Sweden, Germany, Belgium, the UK, Canada, and the USA. Conclusions/Significance: This MLST scheme provided sufficient resolution power to unambiguously characterise B. hyodysenteriae isolates, and can be recommended as a routine typing tool that rapidly enables comparisons of isolates. Using this method it was shown that some of the main genetic lineages of B. hyodysenteriae in Spain also occurred in other countries, providing further evidence for international transmission. Finally, analysis of AATs appeared useful for deducing putative ancestral relationships between strains

    Weakly haemolytic variants of Brachyspira hyodysenteriae newly emerged in Europe belong to a distinct subclade with unique genetic properties.

    Get PDF
    Brachyspira (B.) hyodysenteriae is widespread globally, and can cause mucohaemorrhagic colitis (swine dysentery, SD) with severe economic impact in infected herds. Typical strains of B. hyodysenteriae are strongly haemolytic on blood agar, and the haemolytic activity is believed to contribute to virulence in vivo. However, recently there have been reports of atypical weakly haemolytic isolates of B. hyodysenteriae (whBh). In this study, 34 European whBh and 82 strongly haemolytic isolates were subjected to comparative genomic analysis. A phylogenetic tree constructed using core single nucleotide polymorphisms showed that the whBh formed a distinct sub-clade. All eight genes previously associated with haemolysis in B. hyodysenteriae were present in the whBh. No consistent patterns of amino acid substitutions for all whBh were found in these genes. In contrast, a genome region containing six coding sequences (CDSs) had consistent nucleotide sequence differences between strongly and whBh isolates. Two CDSs were predicted to encode ABC transporter proteins, and a TolC family protein, which may have a role in the export of haemolysins from B. hyodysenteriae. Another difference in this region was the presence of three CDSs in whBh that are pseudogenes in strongly haemolytic isolates. One of the intact CDSs from whBh encoded a predicted PadR-like transcriptional repressor that may play a role in repression of haemolysis functions. In summary, a sub-clade of whBh isolates has emerged in Europe, and several genomic differences, that potentially explain the weakly haemolytic phenotype, were identified. These markers may provide targets for discriminatory molecular tests needed in SD surveillance

    The Complete Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira pilosicoli and Comparison with Other Brachyspira Genomes

    Get PDF
    Background: The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes ''intestinal spirochetosis'', a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence. Methodology/Principal Findings: The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence. Conclusions/Significance: The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers āˆ¼99% of the euchromatic genome and is accurate to an error rate of āˆ¼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    An Investigation into the Etiological Agents of Swine Dysentery in Australian Pig Herds.

    Get PDF
    Swine dysentery (SD) is a mucohemorrhagic colitis, classically seen in grower/finisher pigs and caused by infection with the anaerobic intestinal spirochete Brachyspira hyodysenteriae. More recently, however, the newly described species Brachyspira hampsonii and Brachyspira suanatina have been identified as causing SD in North America and/or Europe. Furthermore, there have been occasions where strains of B. hyodysenteriae have been recovered from healthy pigs, including in multiplier herds with high health status. This study investigated whether cases of SD in Australia may be caused by the newly described species; how isolates of B. hyodysenteriae recovered from healthy herds compared to isolates from herds with disease; and how contemporary isolates compare to those recovered in previous decades, including in their plasmid gene content and antimicrobial resistance profiles. In total 1103 fecal and colon samples from pigs in 97 Australian herds were collected and tested. Of the agents of SD only B. hyodysenteriae was found, being present in 34 (35.1%) of the herds, including in 14 of 24 (58%) herds that had been considered to be free of SD. Multilocus sequence typing applied to 96 isolates from 30 herds and to 53 Australian isolates dating from the 1980s through the early 2000s showed that they were diverse, distinct from those reported in other countries, and that the 2014/16 isolates generally were different from those from earlier decades. These findings provided evidence for ongoing evolution of B. hyodysenteriae strains in Australia. In seven of the 20 herds where multiple isolates were available, two to four different sequence types (STs) were identified. Isolates with the same STs also were found in some herds with epidemiological links. Analysis of a block of six plasmid virulence-associated genes showed a lack of consistency between their presence or absence and their origin from herds currently with or without disease; however, significantly fewer isolates from the 2000s and from 2014/16 had this block of genes compared to isolates from the 1980s and 1990s. It is speculated that loss of these genes may have been responsible for the occurrence of milder disease occurring in recent years. In addition, fewer isolates from 2014/16 were susceptible to the antimicrobials lincomycin, and to a lesser extent tiamulin, than those from earlier Australian studies. Four distinct multi-drug resistant strains were identified in five herds, posing a threat to disease control

    Development of a Duplex PCR Assay for Detection of Brachyspira hyodysenteriae and Brachyspira pilosicoli in Pig Feces

    Get PDF
    A duplex PCR (D-PCR) amplifying portions of the Brachyspira hyodysenteriae NADH oxidase gene and the B. pilosicoli 16S rRNA gene was developed and then tested on DNA extracted from 178 porcine fecal samples. The feces also underwent anaerobic culture and species-specific PCRs. Fecal extraction-D-PCR detected seven additional samples containing B. hyodysenteriae and five more containing B. pilosicoli

    MIC breakpoints (Ī¼g/ml) for <i>in-vitro</i> antimicrobial susceptibility tests performed on <i>Brachyspira hyodysenteriae</i> isolates

    No full text
    <p>MIC breakpoints (Ī¼g/ml) for <i>in-vitro</i> antimicrobial susceptibility tests performed on <i>Brachyspira hyodysenteriae</i> isolates</p

    Australian State of origin, sequence type (ST) and plasmid profile (PT) of 53 <i>B</i>. <i>hyodysenteriae</i> isolates belonging to 39 STs, isolated in the 1980s, 1990s and early 2000s and used for comparative purposes

    No full text
    <p>Australian State of origin, sequence type (ST) and plasmid profile (PT) of 53 <i>B</i>. <i>hyodysenteriae</i> isolates belonging to 39 STs, isolated in the 1980s, 1990s and early 2000s and used for comparative purposes</p

    Number and percentage of STs of recent and historical <i>B</i>. <i>hyodysenteriae</i> isolates possessing different combinations of the six plasmid-borne virulence-associated genes

    No full text
    <p>Number and percentage of STs of recent and historical <i>B</i>. <i>hyodysenteriae</i> isolates possessing different combinations of the six plasmid-borne virulence-associated genes</p
    corecore