16 research outputs found
T-cells contribute to hypertension but not to renal injury in mice with subtotal nephrectomy
Abstract Background The pathological condition of chronic kidney disease may not be adequately recapitulated in immunocompromised mice due to the lack of T-cells, which are important for the development of hypertension and renal injury. We studied the role of the immune system in relation to salt-sensitive hypertension and renal injury in mice with subtotal nephrectomy (SNX). Methods Wild-type immunocompetent (WT) and Foxn1nu/nu athymic immunodeficient (AT) CD-1 mice underwent SNX to induce renal injury after which they received standard chow or a high salt diet (HSD). Four weeks after SNX blood pressure and kidney function parameters were measured. Results HSD increased albumin excretion independent of immune status. Systolic blood pressure increased only in WT mice on HSD, not in AT mice. Uremia and morphological damage after SNX were not affected by either HSD or immune status. Conclusions For the development of hypertension after SNX in CD-1 mice mature T-cells and a high salt diet are required. SNX induced albuminuria was independent of the presence of T-cells
T-cells contribute to hypertension but not to renal injury in mice with subtotal nephrectomy
Background: The pathological condition of chronic kidney disease may not be adequately recapitulated in immunocompromised mice due to the lack of T-cells, which are important for the development of hypertension and renal injury. We studied the role of the immune system in relation to salt-sensitive hypertension and renal injury in mice with subtotal nephrectomy (SNX). Methods: Wild-type immunocompetent (WT) and Foxn1nu/nu athymic immunodeficient (AT) CD-1 mice underwent SNX to induce renal injury after which they received standard chow or a high salt diet (HSD). Four weeks after SNX blood pressure and kidney function parameters were measured. Results: HSD increased albumin excretion independent of immune status. Systolic blood pressure increased only in WT mice on HSD, not in AT mice. Uremia and morphological damage after SNX were not affected by either HSD or immune status. Conclusions: For the development of hypertension after SNX in CD-1 mice mature T-cells and a high salt diet are required. SNX induced albuminuria was independent of the presence of T-cells
Cell-based therapies for experimental chronic kidney disease : A systematic review and meta-analysis
Cell-based therapy is a promising strategy for treating chronic kidney disease (CKD) and is currently the focus of preclinical studies. We performed a systematic review and meta-analysis to evaluate the efficacy of cell-based therapy in preclinical (animal) studies of CKD, and determined factors affecting cell-based therapy efficacy in order to guide future clinical trials. In total, 71 articles met the inclusion criteria. Standardised mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcome parameters including plasma urea, plasma creatinine, urinary protein, blood pressure, glomerular filtration rate, glomerulosclerosis and interstitial fibrosis. Sub-analysis for each outcome measure was performed for model-related factors (species, gender, model and timing of therapy) and cell-related factors (cell type, condition and origin, administration route and regime of therapy). Overall, meta-analysis showed that cell-based therapy reduced the development and progression of CKD. This was most prominent for urinary protein (SMD, 1.34; 95% CI, 1.00-1.68) and urea (1.09; 0.66-1.51), both P<0.001. Changes in plasma urea were associated with changes in both glomerulosclerosis and interstitial fibrosis. Sub-analysis showed that cell type (bone-marrow-derived progenitors and mesenchymal stromal cells being most effective) and administration route (intravenous or renal artery injection) were significant predictors of therapeutic efficacy. The timing of therapy in relation to clinical manifestation of disease, and cell origin and dose, were not associated with efficacy. Our meta-analysis confirms that cell-based therapies improve impaired renal function and morphology in preclinical models of CKD. Our analyses can be used to optimise experimental interventions and thus support both improved preclinical research and development of cell-based therapeutic interventions in a clinical setting
Dissecting recipient from donor contribution in experimental kidney transplantation : focus on endothelial proliferation and inflammation
Kidney transplantation (Tx) is considered the only definite treatment for end-stage kidney disease (ESKD) patients. The increasing prevalence of ESKD has necessitated the introduction of transplantation with kidneys from suboptimal donors. There is, however, still a lack of fundamental and longitudinal research on suboptimal kidney transplants. Specifically, there is a demand for accurate pre-Tx predictors of donor kidney function and injury to predict post-Tx outcome. In the present study, we combine rat models of chronic kidney disease (CKD) and renal Tx to dissect the effects of healthy and CKD renal grafts on healthy and CKD recipients. We show that renal function at 6 weeks post-Tx is exclusively determined by donor graft quality. Using cell tracking within enhanced green fluorescent protein-positive (eGFP+) recipients, we furthermore show that most inflammatory cells within the donor kidney originate from the donor. Oxidative and vascular extra-renal damage were, in contrast, determined by the recipient. Post- versus pre-Tx evaluation of grafts showed an increase in glomerular and peritubular capillary rarefaction in healthy but not CKD grafts within a CKD environment. Proliferation of glomerular endothelium was similar in all groups, and influx of eGFP+ recipient-derived cells occurred irrespective of graft or recipient status. Glomerular and peritubular capillary rarefaction, severity of inflammation and macrophage subtype data post-Tx were, however, determined by more complicated effects, warranting further study. Our experimental model could help to further distinguish graft from recipient environment effects, leading to new strategies to improve graft survival of suboptimal Tx kidneys.This article has an associated First Person interview with the first author of the paper
DL-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats
Hydrogen sulfide (H2S), carbon monoxide (CO) and nitric oxide (NO) share signaling and vasorelaxant properties and are involved in proliferation and apoptosis. Inhibiting NO production or availability induces hypertension and proteinuria, which is prevented by concomitant blockade of the H2S producing enzyme cystathionine ?-lyase (CSE) by D,L-propargylglycine (PAG). We hypothesized that blocking H2S production ameliorates Angiotensin II (AngII)-induced hypertension and renal injury in a rodent model. Effects of concomitant administration of PAG or saline were therefore studied in healthy (CON) and AngII hypertensive rats. In CON rats, PAG did not affect systolic blood pressure (SBP), but slightly increased proteinuria. In AngII rats PAG reduced SBP, proteinuria and plasma creatinine (180±12 vs. 211±19 mmHg; 66±35 vs. 346±92 mg/24h; 24±6 vs. 47±15 ?mol/L, respectively; p<0.01). Unexpectedly, kidney to body weight ratio was increased in all groups by PAG (p<0.05). Renal injury induced by AngII was reduced by PAG (p<0.001). HO-1 gene expression was increased by PAG alone (p<0.05). PAG increased inner cortical tubular cell proliferation after 1 week and decreased outer cortical tubular nucleus number/field after 4 weeks. In vitro proximal tubular cell size increased after exposure to PAG. In summary, blocking H2S production with PAG reduced SBP and renal injury in AngII infused rats. Independent of the cardiovascular and renal effects, PAG increased HO-1 gene expression and kidney weight. PAG alone increased tubular cell size and proliferation in-vivo and in-vitro. Our results are indicative of a complex interplay of gasotransmitter signaling/action of mutually compensatory nature in the kidney
Dissecting recipient from donor contribution in experimental kidney transplantation : focus on endothelial proliferation and inflammation
Kidney transplantation (Tx) is considered the only definite treatment for end-stage kidney disease (ESKD) patients. The increasing prevalence of ESKD has necessitated the introduction of transplantation with kidneys from suboptimal donors. There is, however, still a lack of fundamental and longitudinal research on suboptimal kidney transplants. Specifically, there is a demand for accurate pre-Tx predictors of donor kidney function and injury to predict post-Tx outcome. In the present study, we combine rat models of chronic kidney disease (CKD) and renal Tx to dissect the effects of healthy and CKD renal grafts on healthy and CKD recipients. We show that renal function at 6 weeks post-Tx is exclusively determined by donor graft quality. Using cell tracking within enhanced green fluorescent protein-positive (eGFP+) recipients, we furthermore show that most inflammatory cells within the donor kidney originate from the donor. Oxidative and vascular extra-renal damage were, in contrast, determined by the recipient. Post- versus pre-Tx evaluation of grafts showed an increase in glomerular and peritubular capillary rarefaction in healthy but not CKD grafts within a CKD environment. Proliferation of glomerular endothelium was similar in all groups, and influx of eGFP+ recipient-derived cells occurred irrespective of graft or recipient status. Glomerular and peritubular capillary rarefaction, severity of inflammation and macrophage subtype data post-Tx were, however, determined by more complicated effects, warranting further study. Our experimental model could help to further distinguish graft from recipient environment effects, leading to new strategies to improve graft survival of suboptimal Tx kidneys.This article has an associated First Person interview with the first author of the paper
Dissociation between hypertrophy and fibrosis in the left ventricle early after experimental kidney transplantation
OBJECTIVE: Left ventricular (LV) hypertrophy is the most common cardiac alteration in patients with chronic kidney disease (CKD). Normalization of hypertension in CKD patients receiving a healthy kidney allograft often reverses LV hypertrophy, but effects on LV fibrosis remain unclear. To study causal interactions between graft and environment on LV hypertrophy, fibrosis and inflammation, we applied cross-kidney transplantation METHODS:: Orthotopic transplantation was performed after inducing CKD in rats by two-third bilateral ablation of kidney mass: Healthy kidney (K) donor to healthy heart (H) recipient (healthy-K→healthy-H); CKD-K→healthy-H; healthy-K→CKD-H; CKD-K→CKD-H; N= 6 per group. RESULTS: At week 6 after transplantation, mean arterial pressure (MAP) and LV mass index (LVMI) increased in CKD-K versus healthy-K irrespective of recipient. Contrarily, LV fibrosis was more severe in CKD-H versus healthy-H recipients irrespective of graft. Indeed, MAP and plasma creatinine correlated with LVMI but not with LV fibrosis. Increased LVMI in CKD-K→CKD-H not accompanied by cardiomyocyte cross-sectional area gain is consistent with eccentric remodelling. Cardiac RNA sequencing found a strong transcriptional response associated with LV fibrosis but only sparse changes associated with LV hypertrophy. This response was, among others, characterized by changes in extracellular matrix (ECM) and inflammatory gene expression. CONCLUSION: LVMI reversed and MAP and renal function were normalized early after transplantation of a healthy kidney. However, LV fibrosis persisted, dissociating LV hypertrophy from LV fibrosis within 6 weeks. Elucidating cardiac ECM dynamics in CKD patients, although challenging, appears promising
Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease
INTRODUCTION: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported to improve cellular repair mechanisms. METHODS: We studied whether exposing CKD rat BMCs ex vivo to pravastatin improved their in vivo therapeutic efficacy in CKD and compared this to systemic in vivo treatment. Six weeks after CKD induction, healthy BMCs, healthy pravastatin-pretreated BMCs, CKD BMCs or CKD pravastatin-pretreated BMCs were injected into the renal artery of CKD rats. RESULTS: At 6 weeks after BMC injection renal injury was reduced in pravastatin-pretreated CKD BMC recipients vs. CKD BMC recipients. Effective renal plasma flow was lower and filtration fraction was higher in CKD BMC recipients compared to all groups whereas there was no difference between pravastatin-pretreated CKD BMC and healthy BMC recipients. Mean arterial pressure was higher in CKD BMC recipients compared to all other groups. In contrast, 6 weeks of systemic in vivo pravastatin treatment had no effect. In vitro results showed improved migration, decreased apoptosis and lower excretion of pro-inflammatory Chemokine (C-X-C Motif) Ligand 5 in pravastatin-pretreated CKD BMCs. CONCLUSIONS: Short ex vivo exposure of CKD BMC to pravastatin improves CKD BMC function and their subsequent therapeutic efficacy in a CKD setting, whereas systemic statin treatment did not provide renal protection