14 research outputs found

    Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    Get PDF
    Purpose: Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formation and stratification in a humanized animal model. Methods: Dermo-epidermal skin grafts with either amniocytes or with fibroblasts in the dermis were compared in a rat model. Full-thickness skin wounds on the back of immuno-incompetent rats were covered with skin grafts with (1) amniocytes in the dermis, (2) fibroblasts in the dermis, or, (3) acellular dermis. Grafts were excised 7 and 21days post transplantation. Histology and immunofluorescence were performed to investigate epidermis formation, stratification, and expression of established skin markers. Results: The epidermis of skin grafts engineered with amniocytes showed near-normal anatomy, a continuous basal lamina, and a stratum corneum. Expression patterns for keratin 15, keratin 16, and Ki67 were similar to grafts with fibroblasts; keratin 1 expression was not yet fully established in all suprabasal cell layers, expression of keratin 19 was increased and not only restricted to the basal cell layer as seen in grafts with fibroblasts. In grafts with acellular dermis, keratinocytes did not survive. Conclusion: Dermo-epidermal skin grafts with amniocytes show near-normal physiological behavior suggesting that amniocytes substitute fibroblast function to support the essential cross-talk between mesenchyme and epithelia needed for epidermal stratification. This novel finding has considerable implications regarding tissue engineerin

    Generation and Differentiation of Adult Tissue-Derived Human Thyroid Organoids

    Get PDF
    Total thyroidectomy as part of thyroid cancer treatment results in hypothyroidism requiring lifelong daily thyroid hormone replacement. Unbalanced hormone levels result in persistent complaints such as fatigue, constipation, and weight increase. Therefore, we aimed to investigate a patient-derived thyroid organoid model with the potential to regenerate the thyroid gland. Murine and human thyroidderived cells were cultured as organoids capable of self-renewal and which expressed proliferation and putative stem cell and thyroid characteristics, without a change in the expression of thyroid tumor-related genes. These organoids formed thyroid-tissue-resembling structures in culture. (Xeno-)transplantation of 600,000 dispersed organoid cells underneath the kidney capsule of a hypothyroid mouse model resulted in the generation of hormone-producing thyroid-resembling follicles. This study provides evidence that thyroid-lineagespecific cells can form organoids that are able to self-renew and differentiate into functional thyroid tissue. Subsequent (xeno-)transplantation of these thyroid organoids demonstrates a proof of principle for functional miniature gland formation

    The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    Get PDF
    PURPOSE: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. METHODS AND MATERIALS: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. RESULTS: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. CONCLUSIONS: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro

    Lack of DNA Damage Response at Low Radiation Doses in Adult Stem Cells Contributes to Organ Dysfunction

    Get PDF
    Purpose: Radiotherapy for head and neck cancer may result in serious side effects, such as hyposalivation, impairing the patient's quality of life. Modern radiotherapy techniques attempt to reduce the dose to salivary glands, which, however, results in low-dose irradiation of the tissue stem cells. Here we assess the low-dose sensitivity of tissue stem cells and the consequences for tissue function. Experimental Design: Postirradiation rat salivary gland secretory function was determined after pilocarpine induction. Murine and patient-derived salivary gland and thyroid gland organoids were irradiated and clonogenic survival was assessed. The DNA damage response (DDR) was analyzed in organoids and modulated using different radiation modalities, chemical inhibition, and genetic modification. Results: Relative low-dose irradiation to the high-density stem cell region of rat salivary gland disproportionally impaired function. Hyper-radiosensitivity at doses = 1 Gy, was observed in salivary gland and thyroid gland organoid cultures. DDR modulation resulted in diminished, or even abrogated, relative radioresistance. Furthermore, inhibition of the DDR protein ATM impaired DNA repair after 1 Gy, but not 0.25 Gy. Irradiation of patient-derived salivary gland organoid cells showed similar responses, whereas a single 1 Gy dose to salivary gland-derived stem cells resulted in greater survival than clinically relevant fractionated doses of 4 x 0.25 Gy. Conclusions: We show that murine and human glandular tissue stem cells exhibit a dose threshold in DDR activation, resulting in low-dose hyper-radiosensitivity, with clinical implications in radiotherapy treatment planning. Furthermore, our results from patient-derived organoids highlight the potential of organoids to study normal tissue responses to radiation. (C) 2018 AACR

    The use of mesenchymal cells in fetal and adult tissue repair

    Get PDF
    Spina bifida is een aangeboren sluitingsdefect van de neurale buis en komt voor bij ongeveer 1 op de 2000 geboorten. Spina bifida kan leiden tot hydrocephalus, mentale retardatie, verlamming van het onderste gedeelte van het lichaam, urologische en orthopedische afwijkingen. De oorzaak van spina bifida is onbekend, maar waarschijnlijk spelen zowel genetische als omgevings factoren een rol. Doordat de neurale buis niet sluit tijdens de embryonale ontwikkeling, staat de ruggengraat bloot aan het vruchtwater. Deze blootstelling blijkt deels de oorzaak te zijn van de neurale schade ten gevolge van spina bifida. Afdekken van de open neuraal buis in een vroeg foetaal stadium zou dus schade kunnen beperken. Een klinische trial uitgevoerd in de VS heeft twee behandelingsmethodes met elkaar vergeleken: postnatale sluiting van het neuraal buis defect en foetale sluiting van het defect. Patiënten die foetaal behandeld zijn lieten een betere neurale uitkomst zien, maar foetale chirurgie leidde ook tot een hogere kans op premature geboorte. Dus hoewel deze patiënten een betere neurale uitkomst hadden, is het noodzakelijk dat er nieuwe strategieën ontworpen worden om foetale therapie voor spina bifida te verbeteren. Een veelbelovende aanpak hiervoor kan tissue engineering zijn. Het doel van dit proefschrift was om meer inzicht te krijgen in de cellulaire processen die betrokken zijn bij foetale en adulte wondheling. De hiermee verkregen kennis kan gebruikt worden om nieuwe therapieën te ontwikkelen voor bijvoorbeeld spina bifida.
    corecore